skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence
Abstract The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre‐empt infectious disease risks, especially in the context of how large‐scale factors such as urbanization affect defence by changing environmental conditions.We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large‐scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small‐scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods.We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence.We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed‐effects models that account for spatial variability while also allowing researchers to account for both individual‐ and habitat‐level covariates.We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large‐scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large‐scale field studies with small‐scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta‐analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual‐ to habitat‐level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.  more » « less
Award ID(s):
1656618 1716698
PAR ID:
10458293
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
4
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 972-995
Size(s):
p. 972-995
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense. 
    more » « less
  2. Abstract In FocusBecker, D. J., Albery, G. F., Kessler, M. K., Lunn, T. J., Falvo, C. A., Czirják, G. Á., Martin, L. B., & Plowright, R. K. (2020). Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence.Journal of Animal Ecology,89, 972–995. Ecoimmunology seeks to identify and explain natural variation in immune function. Most research so far has focused on differences among individuals within populations, which are often driven by trade‐offs in resource allocation between energetically costly immunity and competing processes such as reproduction. In their review article, Becker et al. (2020) have proposed a framework to explicitly address habitat‐ and population‐level differences in wildlife immune phenotypes. Termed macroimmunology, this concept integrates principles from ecoimmunology and macroecology. Becker et al. (2020) have highlighted three non‐mutually exclusive habitat features that are likely to vary at spatial scales and influence immune function: (a) parasite pressure, (b) abiotic and biotic factors and (c) anthropogenic changes. However, a large and robust body of literature suitable for synthesis to detect macroimmunology patterns and effect sizes is not yet available. Through their systematic review and critical assessment, Becker et al. (2020) identified common problems in existing research that hinders spatial inferences, such as a need for spatial replication in study design and statistical analyses that account for spatial dependence. Overall, macroimmunology has the potential to identify and even predict spatial patterns in immune phenotypes that form the mechanistic underpinnings of important wildlife disease processes, and this review represents an important step to realizing these goals. 
    more » « less
  3. Abstract Numerous theoretical models have demonstrated that migration, a seasonal animal movement behaviour, can minimize the risks and costs of parasite infection. Past work on migration–infection interactions assumes migration is the only strategy available to organisms for dealing with the parasite infection, that is they migrate to a different environment to recover or escape from infection. Thus, migration is similar to the non‐spatial strategy of resistance, where hosts prevent infection or kill parasites once infected. However, an alternative defence strategy is to tolerate the infection and experience a lower cost to the infection. To our knowledge, no studies have examined how migration can change based on combining two host strategies (migration and tolerance) for dealing with parasites.In this paper, we aim to understand how both parasite transmission and infection tolerance can influence the host's migratory behaviour.We constructed a model that incorporates two host strategies (migration and tolerance) to understand whether allowing for tolerance affects the proportion of the population that migrates at equilibrium in response to infection.We show that the benefits of tolerance can either decrease or increase the host's migration. Also, if the benefit of migration is great, then individuals are more likely to migrate regardless of the presence of tolerance. Finally, we find that the transmission rate of parasite infection can either decrease or increase the tolerant host's migration, depending on the cost of migration.These findings highlight that adopting two defence strategies is not always beneficial to the hosts. Instead, a single strategy is often better, depending on the costs and benefits of the strategies and infection pressures. Our work further suggests that multiple host‐defence strategies as a potential explanation for the evolution of migration to minimize the parasite infection. Moreover, migration can also affect the ecological and evolutionary dynamics of parasite–host interactions. 
    more » « less
  4. ABSTRACT A central challenge in the fields of evolutionary immunology and disease ecology is to understand the causes and consequences of natural variation in host susceptibility to infectious diseases. As hosts progress from birth to death in the wild, they are exposed to a wide variety of microorganisms that influence their physical condition, immune system maturation, and susceptibility to concurrent and future infection. Thus, multiple exposures to the same or different microbes can be important environmental drivers of host immunological variation and immune priming. In this perspective, I discuss parasite infracommunity interactions and their imprint on host immunity in space and time. I further consider feedbacks from parasite community dynamics within individual hosts on the transmission of disease at higher levels of biological organization and highlight the promise of systems biology approaches, using flour beetles as an example, for studying the role of multiple infections on immunological variation in wild populations. 
    more » « less
  5. Summary Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited.Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering).Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions.Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales. 
    more » « less