skip to main content

Search for: All records

Award ID contains: 1656618

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses tomore »immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.

    « less
  2. null (Ed.)
  3. null (Ed.)
  4. Haddon, Lindsay (Ed.)
    Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers themore »many ways in which physiology can help to support their decisions.« less
  5. Body mass affects many biological traits, but its impacts on immune defences are fairly unknown. Recent research on mammals found that neutrophil concentrations disproportionately increased (scaled hypermetrically) with body mass, a result not predicted by any existing theory. Although the scaling relationship for mammals might predict how leucocyte concentrations scale with body mass in other vertebrates, vertebrate classes are distinct in many ways that might affect their current and historic interactions with parasites and hence the evolution of their immune systems. Subsequently, here, we asked which existing scaling hypothesis best-predicts relationships between body mass and lymphocyte, eosinophil and heterophil concentrations—the avian functional equivalent of neutrophils—among more than 100 species of birds. We then examined the predictive power of body mass relative to life-history variation, as extensive literature indicates that the timing of key life events has influenced immune system variation among species. Finally, we ask whether avian scaling patterns differ from the patterns we observed in mammals. We found that an intercept-only model best explained lymphocyte and eosinophil concentrations among birds, indicating that the concentrations of these cell types were both independent of body mass. For heterophils, however, body mass explained 31% of the variation in concentrations among species, muchmore »more than life-history variation (4%). As with mammalian neutrophils, avian heterophils scaled hypermetrically ( b = 0.19 ± 0.05), but more steeply than mammals (approx. 1.5 ×; 0.11 ± 0.03). As such, we discuss why birds might require more broadly protective cells compared to mammals of the same body size. Overall, body mass appears to have strong influences on the architecture of immune systems.« less
  6. Abstract Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overallmore »our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.« less