skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Near-Surface Turbulence in Large-Eddy Simulations of a Tornado: An Application of Thin Boundary Layer Equations
Abstract Unsteadiness and horizontal heterogeneities frequently characterize atmospheric motions, especially within convective storms, which are frequently studied using large-eddy simulations (LES). The models of near-surface turbulence employed by atmospheric LES, however, predominantly assume statistically steady and horizontally homogeneous conditions (known as the equilibrium approach). The primary objective of this work is to investigate the potential consequences of such unrealistic assumptions in simulations of tornadoes. Cloud Model 1 (CM1) LES runs are performed using three approaches to model near-surface turbulence: the “semi-slip” boundary condition (which is the most commonly used equilibrium approach), a recently proposed nonequilibrium approach that accounts for some of the effects of turbulence memory, and a nonequilibrium approach based on thin boundary layer equations (TBLE) originally proposed by the engineering community for smooth-wall boundary layer applications. To be adopted for atmospheric applications, the TBLE approach is modified to account for the surface roughness. The implementation of TBLE into CM1 is evaluated using LES results of an idealized, neutral atmospheric boundary layer. LES runs are then performed for an idealized tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. The semi-slip boundary condition, by design, always yields a surface shear stress opposite the horizontal wind at the lowest LES grid level. The nonequilibrium approaches of modeling near-surface turbulence allow for a range of surface-shear-stress directions and enhance the resolved turbulence and wind gusts. The TBLE approach even occasionally permits kinetic energy backscatter from unresolved to resolved scales. Significance Statement The traditional approach of modeling the near-surface turbulence is not suitable for a tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. To understand the influence of statistically unsteady and horizontally heterogeneous near-surface conditions on tornadoes, this work adopts a fairly sophisticated approach from the engineering community and implements it into a widely used atmospheric model with necessary modifications. Compared to the traditional approach, the newly implemented approach produces more turbulent near-surface winds, more flexible surface-drag directions, and stronger wind gusts. These findings suggest a simulated tornado is very sensitive to the modeling approach of near-surface turbulence.  more » « less
Award ID(s):
1821885
PAR ID:
10458386
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
151
Issue:
6
ISSN:
0027-0644
Page Range / eLocation ID:
1587 to 1607
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Surface friction contributes to tornado formation and maintenance by enhancing the convergence of angular momentum. The traditional lower boundary condition in atmospheric models typically assumes an instant equilibrium between the unresolved stress and the resolved shear. This assumption ignores the physics that turbulent motions are generated and dissipated at finite rates—in effect, turbulence has a memory through its lifetime. In this work, a modified lower boundary condition is proposed to account for the effect of turbulence memory. Specifically, when an air parcel moves along a curved trajectory, a normal surface-shear-stress component arises owing to turbulence memory. In the accompanying large-eddy simulation (LES) of idealized tornadoes, the normal surface-shear-stress component is a source of additional dynamic instability, which provides an extra pathway for the development of turbulent motions. The influence of turbulence memory on the intensity of quasi-steady-state tornadoes remains negligible as long as assumptions employed by the modified lower boundary condition hold over a relatively large fraction of the flow region of interest. However, tornadoes in a transient state may be especially sensitive to turbulence memory. Significance Statement Friction between the wind and the ground can influence atmospheric phenomena in important ways. For example, surface friction can be a significant source of rotation in some thunderstorms, and it can also help to intensify rotation when rotation is already present. Unfortunately, the representation of friction’s effects in atmospheric simulations is especially error-prone in phenomena characterized by rapid temporal evolution or strong spatial variations. Our work explores a new framework for representing friction to include the effect of the so-called turbulence memory. The approach is tested in idealized tornado simulations, but it may be applied to a wide range of atmospheric vortices. 
    more » « less
  2. Abstract This work explores the influence of Weighted Essentially Non-Oscillatory (WENO) schemes on Cloud Model 1 (CM1) large-eddy simulations (LES) of a quasi-steady, horizontally homogeneous, fully developed, neutral atmospheric boundary layer (ABL). An advantage of applying WENO schemes to scalar advection in compressible models is the elimination of acoustic waves and associated oscillations of domain-total vertical velocity. Applying WENO schemes to momentum advection in addition to scalar advection yields no further advantage, but has an adverse effect on resolved turbulence within LES. As a tool designed to reduce numerically generated spurious oscillations, WENO schemes also suppress physically realistic instability development in turbulence-resolving simulations. Thus, applying WENO schemes to momentum advection reduces vortex stretching, suppresses the energy cascade, reduces shear-production of resolved Reynolds stress, and eventually amplifies the differences between the surface-layer mean wind profiles in the LES and the mean wind profiles expected in accordance with the filtered law of the wall (LOTW). The role of WENO schemes in adversely influencing surface-layer turbulence has inspired a concept of anti-WENO (AWENO) schemes to enhance instability development in regions where energy-containing turbulent motions are inadequately resolved by LES grids. The success in reproducing the filtered LOTW via AWENO schemes suggests that improving advection schemes is a critical component toward faithfully simulating near-surface turbulence and dealing with other "Terra Incognita" problems. 
    more » « less
  3. Abstract Dispersion processes in the ocean surface boundary layer (OSBL) determine marine material distributions such as those of plankton and pollutants. Sheared velocities drive shear dispersion, which is traditionally assumed to be due to mean horizontal currents that decrease from the surface. However, OSBL turbulence supports along-wind jets; located in near-surface convergence and downwelling regions, such turbulent jets contain strong local shear. Through wind-driven idealized and large-eddy simulation (LES) models of the OSBL, this study examines the role of turbulent along-wind jets in dispersing material. In the idealized model, turbulent jets are generated by prescribed cellular flow with surface convergence and associated downwelling regions. Numeric and analytic model solutions reveal that horizontal jets substantially contribute to along-wind dispersion for sufficiently strong cellular flows and exceed contributions due to vertical mean shear for buoyant surface-trapped material. However, surface convergence regions also accumulate surface-trapped material, reducing shear dispersion by jets. Turbulence resolving LES results of a coastal depth-limited ocean agree qualitatively with the idealized model and reveal long-lived coherent jet structures that are necessary for effective jet dispersion. These coastal results indicate substantial jet contributions to along-wind dispersion. However, jet dispersion is likely less effective in the open ocean because jets are shorter lived, less organized, and distorted due to spiraling Ekman currents. 
    more » « less
  4. The significance of air flow within dense canopies situated on hilly terrain is not in dispute given its relevance to a plethora of applications in meteorology, wind energy, air pollution, atmospheric chemistry and ecology. While the mathematical description of such flows is complex, progress has proceeded through an interplay between experiments, mathematical modelling, and more recently large‐eddy simulations (LESs). In this contribution, LES is used to investigate the topography‐induced changes in the flow field and how these changes propagate to scalar transport within the canopy. The LES runs are conducted for a neutral atmospheric boundary layer above a tall dense forested canopy situated on a train of two‐dimensional sinusoidal hills. The foliage distribution is specified using leaf area density measurements collected in an Amazon rain forest. A series of LES runs with increasing hill amplitude are conducted to disturb the flow from its flat‐terrain state. The LES runs successfully reproduce the recirculation region and the flow separation on the lee‐side of the hill within the canopy region in agreement with prior laboratory and LES studies. Simulation results show that air parcels released inside the canopy have two preferential pathways to escape the canopy region: a “local” pathway similar to that encountered in flat terrain and an “advective” pathway near the flow‐separation region. Further analysis shows that the preferential escape location over the flow‐separation region leads to a “chimney”‐like effect that becomes amplified for air parcel releases near the forest floor. The work here demonstrates that shear‐layer turbulence is the main mechanism exporting air parcels out the canopy for both pathways. However, compared to flat terrain, the mean updraught at the flow separation induced by topography significantly shortens the in‐canopy residence time for air parcels released in the lower canopy, thus enhancing the export fraction of reactive gases. 
    more » « less
  5. Abstract Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real tornadoes, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids parcel trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated. To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem either to moving circuits that are constrained to simple surfaces or to a ‘hybrid’ circuit defined next. Let A be the horizontal surface at one grid spacing off the ground. Above A the circuit moves as a material circuit. Horizontal curve segments that move in A with the horizontal wind replace segments of the material circuit that dip below A . The circulation equation for the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal. This term is easily evaluated on A . Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation. 
    more » « less