skip to main content


Search for: All records

Award ID contains: 1821885

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting aspseudo-Lagrangiandrifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft.

    Significance Statement

    Swarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes.

     
    more » « less
  2. Abstract

    Convective inhibition (CIN) is one of the parameters used by forecasters to determine the inflow layer of a convective storm, but little work has examined the best way to compute CIN. One decision that must be made is whether to lift parcels following a pseudoadiabat (removing hydrometeors as the parcel ascends) or reversible moist adiabat (retaining hydrometeors). To determine which option is best, idealized simulations of ordinary convection are examined using a variety of base states with different reversible CIN values for parcels originating in the lowest 500 m. Parcel trajectories suggest that ascent over the lowest few kilometers, where CIN is typically accumulated, is best conceptualized as a reversible moist adiabatic process instead of a pseudoadiabatic process. Most inflow layers do not contain parcels with substantial reversible CIN, despite these parcels possessing ample convective available potential energy and minimal pseudoadiabatic CIN. If a stronger initiation method is used, or hydrometeor loading is ignored, simulations can ingest more parcels with large amounts of reversible CIN. These results suggest that reversible CIN, not pseudoadiabatic CIN, is the physically relevant way to compute CIN and that forecasters may benefit from examining reversible CIN instead of pseudoadiabatic CIN when determining the inflow layer.

     
    more » « less
  3. Abstract Unsteadiness and horizontal heterogeneities frequently characterize atmospheric motions, especially within convective storms, which are frequently studied using large-eddy simulations (LES). The models of near-surface turbulence employed by atmospheric LES, however, predominantly assume statistically steady and horizontally homogeneous conditions (known as the equilibrium approach). The primary objective of this work is to investigate the potential consequences of such unrealistic assumptions in simulations of tornadoes. Cloud Model 1 (CM1) LES runs are performed using three approaches to model near-surface turbulence: the “semi-slip” boundary condition (which is the most commonly used equilibrium approach), a recently proposed nonequilibrium approach that accounts for some of the effects of turbulence memory, and a nonequilibrium approach based on thin boundary layer equations (TBLE) originally proposed by the engineering community for smooth-wall boundary layer applications. To be adopted for atmospheric applications, the TBLE approach is modified to account for the surface roughness. The implementation of TBLE into CM1 is evaluated using LES results of an idealized, neutral atmospheric boundary layer. LES runs are then performed for an idealized tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. The semi-slip boundary condition, by design, always yields a surface shear stress opposite the horizontal wind at the lowest LES grid level. The nonequilibrium approaches of modeling near-surface turbulence allow for a range of surface-shear-stress directions and enhance the resolved turbulence and wind gusts. The TBLE approach even occasionally permits kinetic energy backscatter from unresolved to resolved scales. Significance Statement The traditional approach of modeling the near-surface turbulence is not suitable for a tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. To understand the influence of statistically unsteady and horizontally heterogeneous near-surface conditions on tornadoes, this work adopts a fairly sophisticated approach from the engineering community and implements it into a widely used atmospheric model with necessary modifications. Compared to the traditional approach, the newly implemented approach produces more turbulent near-surface winds, more flexible surface-drag directions, and stronger wind gusts. These findings suggest a simulated tornado is very sensitive to the modeling approach of near-surface turbulence. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Abstract This work explores the influence of Weighted Essentially Non-Oscillatory (WENO) schemes on Cloud Model 1 (CM1) large-eddy simulations (LES) of a quasi-steady, horizontally homogeneous, fully developed, neutral atmospheric boundary layer (ABL). An advantage of applying WENO schemes to scalar advection in compressible models is the elimination of acoustic waves and associated oscillations of domain-total vertical velocity. Applying WENO schemes to momentum advection in addition to scalar advection yields no further advantage, but has an adverse effect on resolved turbulence within LES. As a tool designed to reduce numerically generated spurious oscillations, WENO schemes also suppress physically realistic instability development in turbulence-resolving simulations. Thus, applying WENO schemes to momentum advection reduces vortex stretching, suppresses the energy cascade, reduces shear-production of resolved Reynolds stress, and eventually amplifies the differences between the surface-layer mean wind profiles in the LES and the mean wind profiles expected in accordance with the filtered law of the wall (LOTW). The role of WENO schemes in adversely influencing surface-layer turbulence has inspired a concept of anti-WENO (AWENO) schemes to enhance instability development in regions where energy-containing turbulent motions are inadequately resolved by LES grids. The success in reproducing the filtered LOTW via AWENO schemes suggests that improving advection schemes is a critical component toward faithfully simulating near-surface turbulence and dealing with other "Terra Incognita" problems. 
    more » « less
  5. Abstract Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real tornadoes, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids parcel trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated. To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem either to moving circuits that are constrained to simple surfaces or to a ‘hybrid’ circuit defined next. Let A be the horizontal surface at one grid spacing off the ground. Above A the circuit moves as a material circuit. Horizontal curve segments that move in A with the horizontal wind replace segments of the material circuit that dip below A . The circulation equation for the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal. This term is easily evaluated on A . Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation. 
    more » « less
  6. Abstract Storms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased. 
    more » « less
  7. null (Ed.)
    Abstract Surface friction contributes to tornado formation and maintenance by enhancing the convergence of angular momentum. The traditional lower boundary condition in atmospheric models typically assumes an instant equilibrium between the unresolved stress and the resolved shear. This assumption ignores the physics that turbulent motions are generated and dissipated at finite rates—in effect, turbulence has a memory through its lifetime. In this work, a modified lower boundary condition is proposed to account for the effect of turbulence memory. Specifically, when an air parcel moves along a curved trajectory, a normal surface-shear-stress component arises owing to turbulence memory. In the accompanying large-eddy simulation (LES) of idealized tornadoes, the normal surface-shear-stress component is a source of additional dynamic instability, which provides an extra pathway for the development of turbulent motions. The influence of turbulence memory on the intensity of quasi-steady-state tornadoes remains negligible as long as assumptions employed by the modified lower boundary condition hold over a relatively large fraction of the flow region of interest. However, tornadoes in a transient state may be especially sensitive to turbulence memory. Significance Statement Friction between the wind and the ground can influence atmospheric phenomena in important ways. For example, surface friction can be a significant source of rotation in some thunderstorms, and it can also help to intensify rotation when rotation is already present. Unfortunately, the representation of friction’s effects in atmospheric simulations is especially error-prone in phenomena characterized by rapid temporal evolution or strong spatial variations. Our work explores a new framework for representing friction to include the effect of the so-called turbulence memory. The approach is tested in idealized tornado simulations, but it may be applied to a wide range of atmospheric vortices. 
    more » « less
  8. null (Ed.)
    Abstract Recent high-resolution numerical simulations of supercells have identified a feature referred to as the streamwise vorticity current (SVC). Some have presumed the SVC to play a role in tornadogenesis and maintenance, though observations of such a feature have been limited. To this end, 125-m dual-Doppler wind syntheses and mobile mesonet observations are used to examine three observed supercells for evidence of an SVC. Two of the three supercells are found to contain a feature similar to an SVC, while the other supercell contains an antistreamwise vorticity ribbon on the southern fringe of the forward flank. A closer examination of the two supercells with SVCs reveals that the SVCs are located on the cool side of boundaries within the forward flank that separate colder, more turbulent flow from warmer, more laminar flow, similar to numerical simulations. Furthermore, the observed SVCs are similar to those in simulations in that they appear to be associated with baroclinic vorticity generation and have similar appearances in vertical cross sections. Aside from some apparent differences in the location of the maximum streamwise vorticity between simulated and observed SVCs, the SVCs seen in numerical simulations are indeed similar to reality. The SVC, however, may not be essential for tornadogenesis, at least for weak tornadoes, because the supercell that did not have a well-defined SVC produced at least one brief, weak tornado during the analysis period. 
    more » « less
  9. Abstract A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes. 
    more » « less
  10. null (Ed.)
    Abstract A supercell produced a nearly tornadic vortex during an intercept by the Second Verification of the Origins of Rotation in Tornadoes Experiment on 26 May 2010. Using observations from two mobile radars performing dual-Doppler scans, a five-probe mobile mesonet, and a proximity sounding, factors that prevented this vortex from strengthening into a significant tornado are examined. Mobile mesonet observations indicate that portions of the supercell outflow possessed excessive negative buoyancy, likely owing in part to low boundary layer relative humidity, as indicated by a high environmental lifted condensation level. Comparisons to a tornadic supercell suggest that the Prospect Valley storm had enough far-field circulation to produce a significant tornado, but was unable to converge this circulation to a sufficiently small radius. Trajectories suggest that the weak convergence might be due to the low-level mesocyclone ingesting parcels with considerable crosswise vorticity from the near-storm environment, which has been found to contribute to less steady and weaker low-level updrafts in supercell simulations. Yet another factor that likely contributed to the weak low-level circulation was the inability of parcels rich in streamwise vorticity from the forward-flank precipitation region to reach the low-level mesocyclone, likely owing to an unfavorable pressure gradient force field. In light of these results, we suggest that future research should continue focusing on the role of internal, storm-scale processes in tornadogenesis, especially in marginal environments. 
    more » « less