skip to main content


Title: Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A meta‐analysis with Salicaceae
Abstract

Ecological research has increasingly highlighted the importance of intraspecific variation in shaping the structure and function of communities and ecosystems. Indeed, the effects of intraspecific variation can match or exceed those of interspecific variation. Previous reviews of intraspecific variation in plant traits across heterogeneous environments have focused primarily onmeanphenotypic effects. We propose that a richer and fuller understanding of the ecological causes and consequences of intraspecific variation would be provided by partitioning traitvarianceinto its subcomponents (genetic, environment, genotype by environment interaction).

We used a meta‐analysis of 352 sets of genetic, environment and genotype by environment (G×E) variation estimates from 72 studies of Salicaceae to compare these sources of variation across plant traits (growth, foliar nitrogen, defence compounds), insect herbivore performance metrics (e.g., survival, growth, fecundity) and environmental conditions (e.g., soil nutrients, water, defoliation).

Our findings revealed that variation in levels of defence compounds (both condensed tannins and salicinoids) and insect herbivore performance were primarily genetically determined, while variation in plant growth and foliar nitrogen was more environmentally determined.

Plasticity in plant growth, foliar nitrogen levels and insect herbivore performance varied substantially across different sites (year × location), and nutrient, water and carbon dioxide environments. Plasticity was lowest for chemical defence traits and all traits in contrasting ozone and defoliation environments.

Our quantitative review also revealed several gaps in the literature, including a need for surveying more mature plants, a wider variety of insect herbivore species (e.g., leaf‐galling insects, specialist insects) and underrepresented environmental treatments (e.g., competition, defoliation, disease, light and water availability).

Findings from this analysis highlight the importance of, and patterns within, intraspecific variation with respect to shaping the evolvability and plasticity of traits and governing the interactions of plants and insects.

Aplain language summaryis available for this article.

 
more » « less
NSF-PAR ID:
10458469
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
33
Issue:
3
ISSN:
0269-8463
Page Range / eLocation ID:
p. 422-435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.

    In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed,Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.

    We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype‐by‐environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.

    Overall, our data reveal powerful genotype‐by‐environment interactions on the expression of most resistance traits in milkweed.

     
    more » « less
  2. Abstract

    Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plantgenotypelevel and has not identified the key underlying genes. To address this gap, we used genome‐wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13Populusgenes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin‐like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the “genes” into “genes to ecosystems ecology”, this work enhances understanding of the molecular genetic mechanisms that underlie plant–insect associations and the consequences thereof for the structure of ecological communities.

     
    more » « less
  3. Abstract

    Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such asPopulus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.

     
    more » « less
  4. Abstract

    Plants face many environmental stresses that can impact their survival, development and fitness. Insects are the most diverse, abundant and threatening herbivores in nature. As a consequence, plants produce direct chemical and physical defences to reduce herbivory. They also release volatiles to recruit natural enemies that indirectly protect them from herbivory. The recruitment of parasitic wasps can benefit plant fitness because they ultimately kill their insect hosts.

    Recently, studies showed that parasitoids can indirectly mediate plant defences by modulating herbivore oral secretions. In addition to the direct benefits of parasitoids in terms of reducing herbivore survival, we tested if the reduction in induced defences by parasitized caterpillars compared to non‐parasitized caterpillars may reduce the costs associated with defence expression.

    We provide evidence that tomato plants treated with saliva from parasitized caterpillars have significantly higher fitness parameters including increased flower numbers (16.3%) and heavier fruit weight (13.5%), compared to plants treated with saliva from non‐parasitized caterpillars. Since plants were grown without actual herbivores, the higher values for these fitness parameters were due to lower costs of induced defences and not due to reduced herbivory by parasitized caterpillars. Furthermore, the resulting seed germination time was shorter and the germination rate was higher when the maternal plants were previously exposed to parasitized herbivore treatment compared to control (non‐treated) plants.

    Overall, application of saliva did not result in transgenerational priming of offspring defence responses. However, offspring of parents exposed to caterpillar saliva had lower constitutive levels and higher induced levels of trypsin inhibitor than offspring from unexposed parents.

    This study shows that the saliva of parasitized caterpillars can modulate plant defences and further demonstrates that the lower induction of plant defences is associated with elevated plant fitness in the absence of herbivore feeding, suggesting that induced plant defences are costly.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    Intraspecific diversity of dominant species in native plant communities can modulate ecosystem function under both optimal and stressful conditions. Yet, few genotype by environment interaction studies quantify differences in the shape of plasticity functions or phenotypic breakpoints across genotypes in natural populations.

    Using three genotypes with a history of drought selection, we performed a greenhouse study on the dominant tallgrass prairie speciesAndropogon gerardii. We investigated phenotypic plasticity and recovery differences among genotypes across a water availability gradient, measuring growth‐related, instantaneous and cumulative phenotypes. To further understand genotype by environment effects, we quantified plasticity functions and breakpoints among genotypes.

    Like other studies, we found strong evidence for phenotypic and plasticity differences among genotypes. However, we also found nonlinear plasticity functions and breakpoints were common across phenotypes, especially relative growth rates, biomass allocation and root architecture. Drought selected genotypes were also more likely to flower during recovery, but all genotypes were resilient to drought across treatments.

    We demonstrate that plasticity functions may help explain intraspecific diversity, patterns of selection and nonlinear community responses to more variable rainfall within an experimental population. In particular, plasticity functions can help disentangle drought/variability tolerance versus acquisitive strategies. A better understanding of intraspecific diversity in this grass species will provide more mechanistic insight into its ability to buffer ecosystem changes and provide resiliency in the tallgrass prairie under future droughts.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less