skip to main content


Title: Importance of model size in quantum mechanical studies of DNA intercalation
Abstract

The convergence of DFT‐computed interaction energies with increasing binding site model size was assessed. The data show that while accurate intercalator interaction energies can be derived from binding site models featuring only the flanking nucleotides for uncharged intercalators that bind parallel to the DNA base pairs, errors remain significant even when including distant nucleotides for intercalators that are charged, exhibit groove‐binding tails that engage in noncovalent interactions with distant nucleotides, or that bind perpendicular to the DNA base pairs. Consequently, binding site models that include at least three adjacent nucleotides are required to consistently predict converged binding energies. The computationally inexpensive HF‐3c method is shown to provide reliable interaction energies and can be routinely applied to such large models.

 
more » « less
NSF-PAR ID:
10458526
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
41
Issue:
12
ISSN:
0192-8651
Page Range / eLocation ID:
p. 1175-1184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Base stacking interactions between adjacent bases in DNA and RNA are important for many biological processes and in biotechnology applications. Previous work has estimated stacking energies between pairs of bases, but contributions of individual bases has remained unknown. Here, we use a Centrifuge Force Microscope for high-throughput single molecule experiments to measure stacking energies between adjacent bases. We found stacking energies strongest between purines (G|A at −2.3 ± 0.2 kcal/mol) and weakest between pyrimidines (C|T at −0.5 ± 0.1 kcal/mol). Hybrid stacking with phosphorylated, methylated, and RNA nucleotides had no measurable effect, but a fluorophore modification reduced stacking energy. We experimentally show that base stacking can influence stability of a DNA nanostructure, modulate kinetics of enzymatic ligation, and assess accuracy of force fields in molecular dynamics simulations. Our results provide insights into fundamental DNA interactions that are critical in biology and can inform design in biotechnology applications.

     
    more » « less
  2. Abstract

    From DNA base pairs to drug–receptor binding, hydrogen (H‐)bonding and aromaticity are common features of heterocycles. Herein, the interplay of these bonding aspects is explored. H‐bond strength modulation due to enhancement or disruption of aromaticity of heterocycles is experimentally revealed by comparing homodimer H‐bond energies of aromatic heterocycles with analogs that have the same H‐bonding moieties but lack cyclic π‐conjugation. NMR studies of dimerization in C6D6find aromaticity‐modulated H‐bonding (AMHB) energy effects of approximately ±30 %, depending on whether they enhance or weaken aromatic delocalization. The attendant ring current perturbations expected from such modulation are confirmed by chemical shift changes in both observed ring C−H and calculated nucleus‐independent sites. In silico modeling confirms that AMHB effects outweigh those of hybridization or dipole–dipole interaction.

     
    more » « less
  3. Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can initially bind in a comparatively stabilized state to the viral RdRp active site, as it primarily forms base stacking with the template uracil nucleotide (nt +1), which under freely fluctuations supports a low free energy barrier of the RDV-TP insertion (∼1.5 kcal mol −1 ). In comparison, the corresponding natural substrate ATP binds initially to the RdRp active site in Watson–Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (∼2.6 kcal mol −1 ), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be specifically stabilized by motif C-S759, S682 (near motif B) with the base, and motif G-K500 with the template backbone. Although the RDV-TP insertion can be hindered by motif F-R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif A-D623, respectively. 
    more » « less
  4. Protein–DNA interactions play an important role in various biological processes such as gene expression, replication, and transcription. Understanding the important features that dictate the binding affinity of protein-DNA complexes and predicting their affinities is important for elucidating their recognition mechanisms. In this work, we have collected the experimental binding free energy (ΔG) for a set of 391 Protein-DNA complexes and derived several structure-based features such as interaction energy, contact potentials, volume and surface area of binding site residues, base step parameters of the DNA and contacts between different types of atoms. Our analysis on relationship between binding affinity and structural features revealed that the important factors mainly depend on the number of DNA strands as well as functional and structural classes of proteins. Specifically, binding site properties such as number of atom contacts between the DNA and protein, volume of protein binding sites and interaction-based features such as interaction energies and contact potentials are important to understand the binding affinity. Further, we developed multiple regression equations for predicting the binding affinity of protein-DNA complexes belonging to different structural and functional classes. Our method showed an average correlation and mean absolute error of 0.78 and 0.98 kcal/mol, respectively, between the experimental and predicted binding affinities on a jack-knife test. We have developed a webserver, PDA-PreD (Protein-DNA Binding affinity predictor), for predicting the affinity of protein-DNA complexes and it is freely available at https://web.iitm.ac.in/bioinfo2/pdapred/ 
    more » « less
  5. Abstract

    Cooperative DNA-binding by transcription factor (TF) proteins is critical for eukaryotic gene regulation. In the human genome, many regulatory regions contain TF-binding sites in close proximity to each other, which can facilitate cooperative interactions. However, binding site proximity does not necessarily imply cooperative binding, as TFs can also bind independently to each of their neighboring target sites. Currently, the rules that drive cooperative TF binding are not well understood. In addition, it is oftentimes difficult to infer direct TF–TF cooperativity from existing DNA-binding data. Here, we show that in vitro binding assays using DNA libraries of a few thousand genomic sequences with putative cooperative TF-binding events can be used to develop accurate models of cooperativity and to gain insights into cooperative binding mechanisms. Using factors ETS1 and RUNX1 as our case study, we show that the distance and orientation between ETS1 sites are critical determinants of cooperative ETS1–ETS1 binding, while cooperative ETS1–RUNX1 interactions show more flexibility in distance and orientation and can be accurately predicted based on the affinity and sequence/shape features of the binding sites. The approach described here, combining custom experimental design with machine-learning modeling, can be easily applied to study the cooperative DNA-binding patterns of any TFs.

     
    more » « less