skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko )
Abstract

Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap‐footed lizards) only known to occur in three genera:Geckolepis,Gekko, andTarentola. The Tokay gecko (Gekko geckoLINNAEUS 1758) is among the best‐studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well‐known. Likewise, a comparative survey of additional species within the broaderGekkoclade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens ofG. gecko, using X‐rays and high‐resolution computed tomography for visualizing and quantifying the dermal armorin situ. Results from this survey confirm the presence of osteoderms in a second species within this genus,GekkoreevesiiGRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon,G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found thatG. geckoand other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.

 
more » « less
Award ID(s):
1657527 1657662
NSF-PAR ID:
10458571
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Morphology
Volume:
281
Issue:
2
ISSN:
0362-2525
Page Range / eLocation ID:
p. 213-228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dimethylsulfoniopropionate (DMSP) is produced by many species of marine phytoplankton and has been reported to provide a variety of beneficial functions including osmoregulation. Dinoflagellates are recognized as majorDMSPproducers; however, accumulation has been shown to be highly variable in this group. We explored the effect of hyposaline transfer inGambierdiscus belizeanusbetween ecologically relevant salinities (36 and 31) onDMSPaccumulation, Chla, cell growth, and cell volume, over 12 d. Our results showed thatG. belizeanusmaintained an intracellularDMSPcontent of 16.3 pmol cell−1and concentration of 139 mMin both salinities. Although this intracellular concentration was near the median reported for other dinoflagellates, the cellular content achieved byG. belizeanuswas the highest reported of any dinoflagellate thus far, owing mainly to its large size.DMSPlevels were not significantly affected by salinity treatment but did change over time during the experiment. Salinity, however, did have a significant effect on the ratio ofDMSP:Chla, suggesting that salinity transfer ofG. belizeanusinduced a physiological response other thanDMSPadjustment. A survey ofDMSPcontent in a variety ofGambierdiscusspecies and strains revealed relatively highDMSPconcentrations (1.0–16.4 pmol cell−1) as well as high intrageneric and intraspecific variation. We conclude that, althoughDMSPmay not be involved in long‐term (3–12 d) osmoregulation in this species,G. belizeanusand otherGambierdiscusspecies may be important contributors toDMSPproduction in tropical benthic microalgal communities due to their large size and high cellular content.

     
    more » « less
  2. <bold>Summary</bold>

    Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.

     
    more » « less
  3. Summary

    Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. TheWOXtranscriptional repressorWOX1/STF, theLEUNIG(LUG) transcriptional corepressor and theANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development.

    We developed a novelin plantatranscriptional activation/repression assay and suggest thatLUGcould function as a transcriptional coactivator during leaf blade development.

    MtLUGphysically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in theSNHdomain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations inlugandan3enhanced each other's mutant phenotypes. Both thelugand thean3mutations enhanced thewox1 prsleaf and flower phenotypes inArabidopsis.

    Our findings together suggest that transcriptional repression and activation mediated by theWOX,LUGandAN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.

     
    more » « less
  4. Summary

    Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross‐link between two monomers of the low‐abundance pectic polysaccharide rhamnogalacturonan‐II(RGII). The inability ofRGIIto properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects onRGIIstructure and cross‐linking and on the growth of plants in which the expression of aGDP‐sugar transporter (GONST3/GGLT1) has been reduced. In theGGLT1‐silenced plants the amount of L‐galactose in side‐chain A ofRGIIis reduced by up to 50%. This leads to a reduction in the extent ofRGIIcross‐linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to themur1mutant, which also disruptsRGIIcross‐linking,GGLT1‐silenced plants display a loss of cell wall integrity under salt stress. We conclude thatGGLT1 is probably the primary GolgiGDP‐L‐galactose transporter, and providesGDP‐L‐galactose forRGIIbiosynthesis. We propose that the L‐galactose residue is critical forRGIIdimerization and for the stability of the borate cross‐link.

     
    more » « less
  5. Abstract

    We describe sloth assemblages from theCocinetasBasin (LaGuajira peninsula,Colombia), found in theNeogeneCastilletes andWare formations, located in northernmostSouthAmerica, documenting otherwise poorly known biotas. The tentative referral of a specimen to a small megatherioid sloth,Hyperleptus?, from the early–middleMioceneCastilletesFormation, suggests affinities of this fauna with the distantSantaCruzFormation and documents a large latitudinal distribution for this taxon. The latePlioceneWareFormation is much more diverse, with five distinct taxa representing every family of ‘ground sloths’. This diversity is also remarkable at the ecological level, with sloths spanning over two orders of magnitude of body mass and probably having different feeding strategies. Being only a few hundred kilometres away from theIsthmus ofPanama, and a few hundred thousand years older than the classically recognized first main pulse of theGreatAmericanBiotic interchange (GABI1), theWareFormation furthermore documents an important fauna for the understanding of this major event inNeogene palaeobiogeography. The sloths for which unambiguous affinities were recovered are not closely related to the early immigrants found inNorthAmerica beforeGABI1.

     
    more » « less