skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Arabidopsis heterotrimeric G‐protein β subunit, AGB 1, is required for guard cell calcium sensing and calcium‐induced calcium release
<bold>Summary</bold> Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.  more » « less
Award ID(s):
1715826 1121612
PAR ID:
10460555
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
99
Issue:
2
ISSN:
0960-7412
Page Range / eLocation ID:
p. 231-244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters. 
    more » « less
  2. Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response. 
    more » « less
  3. The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light–dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca 2+ ) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca 2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca 2+ oscillations are diminished in sine2-1 but not sine1-1 , and this defect can be rescued by both exogenous Ca 2+ and F-actin depolymerization. We show first evidence for nuclear Ca 2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1 . Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling. 
    more » « less
  4. Summary Little is known about long‐distance mesophyll‐driven signals that regulate stomatal conductance. Soluble and/or vapor‐phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance inArabidopsis thalianaby CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll‐dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene‐signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]‐shifts.According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC‐synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2‐induced stomatal movements. Ethylene‐insensitive receptor (gain‐of‐function),etr1‐1andetr2‐1, and signaling,ein2‐5andein2‐1, mutants showed intact stomatal responses to [CO2]‐shifts, whereas loss‐of‐function ethylene receptor mutants, includingetr2‐3;ein4‐4;ers2‐3,etr1‐6;etr2‐3andetr1‐6, showed markedly accelerated stomatal responses to [CO2]‐shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC‐synthase octuple mutant and accelerated stomatal responses in theetr1‐6;etr2‐3, andetr1‐6, but not in theetr2‐3;ein4‐4;ers2‐3mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2and ABA. 
    more » « less
  5. Summary Abscisic acid (ABA) receptors belong to theSTARTdomain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life.STARTdomain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterizedSTARTdomain proteins are the 14PYR/PYL/RCAR ABAreceptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently inNicotiana benthamianacoupled to untargetedLC‐MSto identify candidate binding ligands. We optimized this method usingABA–PYLinteractions and show thatABAco‐purifies with wild‐typePYL5 but not a binding site mutant. TheKdofPYL5 forABAis 1.1 μm, which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37STARTdomain‐related proteins, which resulted in the identification of ligands that co‐purified withMLBP1 (At4G01883) orMLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed thatMLBP1 binds to monolinolenin, which we confirmed using recombinantMLBP1. Monolinolenin also co‐purified withMLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants. 
    more » « less