Abstract An important role in the cycling of marine trace elements is scavenging, their adsorption and removal from the water column by sinking particles. Boundary scavenging occurs when areas of strong particle flux drive preferential removal of the trace metals at locations of enhanced scavenging. Due to its uniform production and quick burial via scavenging,230Th is used to assess sedimentary mass fluxes; however, these calculations are potentially biased near regions where net lateral transport of dissolved230Th violates the assumption that the flux of particulate230Th to the seabed equals its rate of production in the water column. Here, we present a water column transect of dissolved230Th along 152° W between Alaska and Tahiti (GEOTRACES GP15), where we examine230Th profiles across multiple biogeochemical provinces and, novelly, the lateral transport of230Th to distal East Pacific Rise hydrothermal plumes. We observed a strong relationship between the slope of dissolved230Th concentration‐depth profiles and suspended particle matter inventory in the upper‐mid water column, reinforcing the view that biogenic particle mass flux sets the background230Th distribution in open ocean settings. We find that, instead of the region of enhanced particle flux around the equator, hydrothermal plumes act as a regional boundary sink of230Th. At 152° W, we found that the flux‐to‐production ratio, and thereby error in230Th‐normalized sediment flux, is between 0.80 and 1.50 for hydrothermal water, but the error is likely larger approaching the East Pacific Rise.
more »
« less
230 Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean
Abstract 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of230Th as a constant flux proxy. Anomalous230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).
more »
« less
- PAR ID:
- 10458645
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Distributions of the natural radionuclide210Po and its grandparent210Pb along the GP15 Pacific Meridional Transect provide information on scavenging rates of reactive chemical species throughout the water column and fluxes of particulate organic carbon (POC) from the primary production zone (PPZ).210Pb is in excess of its grandparent226Ra in the upper 400–700 m due to the atmospheric flux of210Pb. Mid‐water210Pb/226Ra activity ratios are close to radioactive equilibrium (1.0) north of ∼20°N, indicating slow scavenging, but deficiencies at stations near and south of the equator suggest more rapid scavenging associated with a “particle veil” located at the equator and hydrothermal processes at the East Pacific Rise. Scavenging of210Pb and210Po is evident in the bottom 500–1,000 m at most stations due to enhanced removal in the nepheloid layer. Deficits in the PPZ of210Po (relative to210Pb) and210Pb (relative to226Ra decay and the210Pb atmospheric flux), together with POC concentrations and particulate210Po and210Pb activities, are used to calculate export fluxes of POC from the PPZ.210Po‐derived POC fluxes on large (>51 μm) particles range from 15.5 ± 1.3 mmol C/m2/d to 1.5 ± 0.2 mmol C/m2/d and are highest in the Subarctic North Pacific;210Pb‐derived fluxes range from 6.7 ± 1.8 mmol C/m2/d to 0.2 ± 0.1 mmol C/m2/d. Both210Po‐ and210Pb‐derived POC fluxes are greater than those calculated using the234Th proxy, possibly due to different integration times of the radionuclides, considering their different radioactive mean‐lives and scavenging mean residence times.more » « less
-
null (Ed.)Abstract Waterfall Bluff is a rock shelter in eastern Pondoland, South Africa, adjacent to a narrow continental shelf that limited coastline movements across glacial/interglacial cycles. The archaeological deposits are characterized by well-preserved stratigraphy, faunal, and botanical remains alongside abundant stone artifacts and other materials. A comprehensive dating protocol consisting of 5 optically stimulated luminescence ages and 51 accelerator mass spectrometry 14 C ages shows that the record of hunter-gatherer occupations at Waterfall Bluff persisted from the late Pleistocene to the Holocene, spanning the last glacial maximum and the transition from the Pleistocene to the Holocene. Here, we provide detailed descriptions about the sedimentary sequence, chronology, and characteristics of the archaeological deposits at Waterfall Bluff. Remains of marine mollusks and marine fish also show, for the first time, that coastal foraging was a component of some hunter-gatherer groups’ subsistence practices during glacial phases in the late Pleistocene. The presence of marine fish and shellfish further demonstrates that hunter-gatherers selectively targeted coastal resources from intertidal and estuarine habitats. Our results therefore underscore the idea that Pondoland's coastline remained a stable and predictable point on the landscape over the last glacial/interglacial transition being well positioned for hunter-gatherers to access resources from the nearby coastline, narrow continental shelf, and inland areas.more » « less
-
Abstract Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two speciesNeogloboquadrina dutertreiandNeogloboquadrina incomptaover the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites.more » « less
-
Abstract Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site‐specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (230Th/232Th) to seawater dissolved230Th/232Th in a suite of deep (>3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial230Th/232Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium‐based SRs were then combined with estimates from the total sediment thickness on ocean crust and non‐lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.more » « less
An official website of the United States government
