North African dust is known to be deposited in the Gulf of Mexico, but its deposition rate and associated supply of lithogenic dissolved metals, such as the abiotic metal thorium or the micronutrient metal iron, have not been well‐quantified.232Th is an isotope with similar sources as iron and its input can be quantified using radiogenic230Th. By comparing dissolved232Th fluxes at three sites in the northern Gulf of Mexico with upwind sites in the North Atlantic, we place an upper bound on North African dust contributions to232Th and Fe in the Gulf of Mexico, which is about 30% of the total input. Precision on this bound is hindered by uncertainty in the relative rates of dust deposition in the North Atlantic and the northern Gulf of Mexico. Based on available radium data, shelf sources, including rivers, submarine groundwater discharge, and benthic sedimentary releases are likely as important if not more important than dust in the budget of lithogenic metals in the Gulf of Mexico. In other words, it is likely there is no one dominant source of Th and Fe in the Gulf of Mexico. Finally, our estimated Fe input in the northern Gulf of Mexico implies an Fe residence time of less than 6 months, similar to that in the North Atlantic despite significantly higher supply rates in the Gulf of Mexico.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Ocean time‐series sites are influenced by both temporal variability, as in situ conditions change, as well as spatial variability, as water masses move across the fixed observation point. To remove the effect of spatial variability, this study made sub‐daily Lagrangian observations of trace elements and isotopes (Al, Sc, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb,232Th, and230Th) in surface water over a 12‐day period (July–August 2015) in the North Pacific near the Hawaii Ocean Time‐series Station ALOHA. Additionally, a vertical profile in the upper 250 m was analyzed. This dataset is intercalibrated with GEOTRACES standards and provides a consistent baseline for trace element studies in the oligotrophic North Pacific. No diel changes in trace elements could be resolved, although day‐to‐day variations were resolved for some elements (Fe, Cu, and Zn), which may be related to organic matter cycling or ligand availability. Pb concentrations remained relatively constant during 1997–2015, presenting a change from previous decreases. Nutrient to trace element stoichiometric ratios were compared to those observed in phytoplankton as an indication of the extent of biological trace element utilization in this ecosystem, providing a basis for future ecological trace element studies.
-
Abstract 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of230Th as a constant flux proxy. Anomalous230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).