skip to main content


Title: Patterns and Drivers of Carbon Dioxide Concentrations in Aquatic Ecosystems of the Arctic Coastal Tundra
Abstract

Multiple aquatic ecosystems (pond, lake, river, lagoon, and ocean) on the Arctic Coastal Plain near Utqiaġvik, Alaska, USA, were visited to determine their relative atmospheric CO2flux and how this may have changed over time. The nearshore coastal waters and large freshwater lakes were small sinks of atmospheric CO2, whereas smaller waterbodies were substantial sources.pCO2was linked to dissolved organic carbon concentrations across broad spatial and temporal scales, with greater concentrations found in smaller freshwater systems (i.e., ponds and rivers). On a day‐to‐day basis, water temperatures appeared to be the strongest driver ofpCO2levels in tundra ponds, where warmer temperatures likely stimulated microbial mineralization of carbon in both aquatic and hydrologically linked terrestrial environments. Large rainfall events, which may lead to inflow of carbon‐rich groundwater into these ponds, also were associated with increased daily averagepCO2. Based on comparison to historical data, we estimate that CO2concentrations in tundra ponds have increased more than 1.8 times over the past 40 years. Quantifying CO2flux from these abundant aquatic ecosystems on the Arctic Coastal Plain and elsewhere in the high northern latitudes will likely have important implications for furthering understanding of landscape‐level and nearshore carbon dynamics in the Arctic.

 
more » « less
Award ID(s):
1656026
NSF-PAR ID:
10458659
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
34
Issue:
3
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐latitude climate change has impacted vegetation productivity, composition, and distribution across tundra ecosystems. Over the past few decades in northern Alaska, emergent macrophytes have increased in cover and density, coincident with increased air and water temperature, active layer depth, and nutrient availability. Unraveling the covarying climate and environmental controls influencing long‐term change trajectories is paramount for advancing our predictive understanding of the causes and consequences of warming in permafrost ecosystems. Within a climate‐controlled carbon flux monitoring system, we evaluate the impact of elevated nutrient availability associated with degraded permafrost (high‐treatment) and maximum field observations (low‐treatment), on aquatic macrophyte growth and methane (CH4) emissions. Nine aquaticArctophila fulva‐dominated tundra monoliths were extracted from tundra ponds near Utqiaġvik, Alaska, and placed in growth chambers that controlled ambient conditions (i.e., light, temperature, and water table), while measuring plant growth (periodically) and CH4fluxes (continuously) for 12 weeks. Results indicate that high nutrient treatments similar to that released from permafrost thaw can increase macrophyte biomass and total CH4emission by 54 and 64%, respectively. However, low treatments did not respond to fertilization. We estimate that permafrost thaw in tundra wetlands near Utqiaġvik have the potential to enhance regional CH4efflux by 30%. This study demonstrates the sensitivity of arctic tundra wetland biogeochemistry to nutrient release from permafrost thaw and suggests the decadal‐scale expansion ofA. fulva‐dominant aquatic plant communities, and increased CH4emissions in the region were likely in response to thawing permafrost, potentially representing a novel case study of the permafrost carbon feedback to warming.

     
    more » « less
  2. Abstract

    Experimental and ambient warming of Arctic tundra results in emissions of greenhouse gases to the atmosphere, contributing to a positive feedback to climate warming. Estimates of gas emissions from lakes and terrestrial tundra confirm the significance of aquatic fluxes in greenhouse gas budgets, whereas few estimates describe emissions from fluvial networks. We measured dissolved gas concentrations and estimated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water tracks, vegetated depressions that hydrologically connect hillslope soils to lakes and streams. Concentrations of trace gases generally increased as ground thaw deepened through the growing season, indicating active production of greenhouse gases in thawed soils. Wet antecedent conditions were correlated with a decline in CO2and CH4concentrations. Dissolved N2O in excess of atmospheric equilibrium occurred in drier water tracks, but on average water tracks took up N2O from the atmosphere at low rates. Estimated CO2emission rates for water tracks were among the highest observed for Arctic aquatic ecosystems, whereas CH4emissions were of similar magnitude to streams. Despite occupying less than 1% of total catchment area, surface waters within water tracks were an estimated source of up to 53–85% of total CH4emissions from their catchments and offset the terrestrial C sink by 5–9% during the growing season. Water tracks are abundant features of tundra landscapes that contain warmer soils and incur deeper thaw than adjacent terrestrial ecosystems and as such might contribute to ongoing and accelerating release of greenhouse gases from permafrost soils to the atmosphere.

     
    more » « less
  3. Abstract

    Plant‐mediatedCH4flux is an important pathway for land–atmosphereCH4emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long‐term effects of climate change.CH4fluxes were measuredin situduring peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain,Carex aquatilisandArctophila fulva, to assess the magnitude and species‐specific controls onCH4flux. Plant biomass was a strong predictor ofA. fulvaCH4flux while water depth and thaw depth were copredictors forC. aquatilisCH4flux. We used plant and environmental data from 1971 to 1972 from the historic International Biological Program (IBP) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species‐specific decadal‐scale changes inCH4fluxes. A ~60% increase inCH4flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. Despite covering only ~5% of the landscape, we estimate that aquaticC. aquatilisandA. fulvaaccount for two‐thirds of the total regionalCH4flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphereCH4emissions for this region, potentially acting as a positive feedback to climate warming.

     
    more » « less
  4. Abstract

    Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time‐ and mass‐dependent, non‐linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2], methane [CH4]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus‐loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned‐detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long‐term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of15N‐labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.

     
    more » « less
  5. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less