Abstract The UV finiteness found in calculations of the 4‐point amplitude insupergravity at loop orderhas not been explained, which motivates our study of the relevant superspace invariants and on‐shell superamplitudes for bothand. The local 4‐point superinvariants forare expected to have nonlinear completions whose 6‐point amplitudes have non‐vanishing SSL's (soft scalar limits), violating the behavior required of Goldstone bosons. For, we find atthat local 6‐point superinvariant and superamplitudes, which might cancel these SSL's, do not exist. This rules out the candidate 4‐point counterterm and thus gives a plausible explanation of the observedfiniteness. However, atwe construct a local 6‐point superinvariant with non‐vanishing SSL's, so the SSL argument does not explain the observedUV finiteness. Forsupergravity there are no 6‐point invariants at eitheror 4, so the SSL argument predicts UV finiteness.
more »
« less
Euphotic zone nitrification in the California Current Ecosystem
Abstract Nitrification, the microbial conversion of ammonium to nitrite then to nitrate, occurs throughout the oceanic water column, yet the environmental factors influencing the production of nitrate in the euphotic zone (EZ) remain unclear. In this study, the natural abundances of N and O isotopes (δ15N and δ18O, respectively) in nitrate were used in an existing model framework to quantify nitrate contributed by EZ nitrification in the California Current Ecosystem (CCE) during two anomalously warm years. Model data estimated that between 6% and 36% of the EZ nitrate reservoirs were derived from the combined steps of nitrification within the EZ. The CCE data set found nitrification contributions to EZ nitrate to be positively correlated with nitrite concentrations () at the depth of the primary nitrite maximum (PNM). Building on this correlation, EZ nitrification in the southern California Current was estimated to contribute on average 20% ± 6% to EZ nitrate as inferred using the PNMof the long‐term California Cooperative Oceanic Fisheries Investigation (CalCOFI) survey record. A multiple linear regression analysis of the CalCOFI PNMtime series identified two conditions that led to positive deviations in. Enhanced PNM, and potentially enhanced EZ nitrification, may be linked to (1) reduced phytoplankton competition for ammonium () andas interpreted from particulate organic carbon:chlorophyll ratios, and/or (2) to increased supply of(and thenoxidation to) from the degradation of organic nitrogen as interpreted from particulate organic nitrogen concentrations.
more »
« less
- PAR ID:
- 10458716
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 65
- Issue:
- 4
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 790-806
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records.more » « less
-
Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.more » « less
-
Abstract In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.more » « less
-
Abstract In field observations from a sinuous estuary, the drag coefficientbased on the momentum balance was in the range of, much greater than expected from bottom friction alone.also varied at tidal and seasonal timescales.was greater during flood tides than ebbs, most notably during spring tides. The ebb tidewas negatively correlated with river discharge, while the flood tideshowed no dependence on discharge. The large values ofare explained by form drag from flow separation at sharp channel bends. Greater water depths during flood tides corresponded with increased values of, consistent with the expected depth dependence for flow separation, as flow separation becomes stronger in deeper water. Additionally, the strength of the adverse pressure gradient downstream of the bend apex, which is indicative of flow separation, correlated withduring flood tides. Whilegenerally increased with water depth,decreased for the highest water levels that corresponded with overbank flow. The decrease inmay be due to the inhibition of flow separation with flow over the vegetated marsh. The dependence ofduring ebbs on discharge corresponds with the inhibition of flow separation by a favoring baroclinic pressure gradient that is locally generated at the bend apex due to curvature‐induced secondary circulation. This effect increases with stratification, which increases with discharge. Additional factors may contribute to the high drag, including secondary circulation, multiple scales of bedforms, and shallow shoals, but the observations suggest that flow separation is the primary source.more » « less
An official website of the United States government
