Abstract Advanced redox‐polymer materials offer a powerful platform for integrating electroseparations and electrocatalysis, especially for water purification and environmental remediation applications. The selective capture and remediation of trivalent arsenic (As(III)) is a central challenge for water purification due to its high toxicity and difficulty to remove at ultra‐dilute concentrations. Current methods present low ion selectivity, and require multistep processes to transform arsenic to the less harmful As(V) state. The tandem selective capture and conversion of As(III) to As(V) is achieved using an asymmetric design of two redox‐active polymers, poly(vinyl)ferrocene (PVF) and poly‐TEMPO‐methacrylate (PTMA). During capture, PVF selectively removes As(III) with exceptional uptake (>100 mg As/g adsorbent), and during release, synergistic electrocatalytic oxidation of As(III) to As(V) with >90% efficiency can be achieved by PTMA, a radical‐based redox polymer. The system demonstrates >90% removal efficiencies with real wastewater and concentrations of arsenic as low as 10 ppb. By integrating electron‐transfer through the judicious design of asymmetric redox‐materials, an order‐of‐magnitude energy efficiency increase can be achieved compared to non‐faradaic, carbon‐based materials. The study demonstrates for the first time the effectiveness of asymmetric redox‐active polymers for integrated reactive separations and electrochemically mediated process intensification for environmental remediation.
more »
« less
Multiplexed and Membraneless Redox‐Mediated Electrochemical Separations Through Bipolar Electrochemistry
Redox‐active electrosorbents are promising platforms for selective separations. However, these platforms face intrinsic challenges in extracting multiple species simultaneously, as their binding mechanisms are typically tailored to separate a single ion preferentially. Here, bipolar electrochemistry is leveraged to introduce a new strategy for the multiplexed use of redox‐active and capacitive materials for separations. Using polyvinyl ferrocene (PVF)‐, Prussian blue analog (PBA)‐functionalized, and carbon‐based electrodes, multicomponent separations within a modular bipolar electrode (BPE) platform are demonstrated. The multiplexed BPE system provides distinct electrochemical environments within each BPE pair, enabling parallel selective separations. With three identical PVF BPEs, arsenic uptake increased linearly from 41.4 to 115.4 mgAsgPVF−1, highlighting the scalability of the system. Moreover, deploying three distinct BPE pairs—PBA, PVF, and carbon—enables simultaneous potassium recovery (11.0 mg g−1), arsenic removal (19.8 mg g−1), and desalination (4.2 mg g−1) from secondary wastewater, demonstrating real‐world applicability. This wireless, membraneless architecture enables process‐intensified selective separations by precisely controlling local electric fields on individual redox‐active materials, facilitating electrosorption and regeneration across diverse BPE systems within a unified process.
more »
« less
- Award ID(s):
- 2323988
- PAR ID:
- 10642669
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemSusChem
- Volume:
- 18
- Issue:
- 13
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Molecular design of redox‐materials provides a promising technique for tuning physicochemical properties which are critical for selective separations and environmental remediation. Here, the structural tuning of redox‐copolymers, 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TMA) and 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine (TMPMA), denoted as P(TMAx‐co‐TMPMA1−x), is investigated for the selective separation of anion contaminants ranging from perfluorinated substances to halogenated aromatic compounds. The amine functional groups provide high affinity toward anionic functionalities, while the redox‐active nitroxyl radical groups promote electrochemically‐controlled capture and release. Controlling the ratio of amines to nitroxyl radicals provides a pathway for tuning the redox‐activity, hydrophobicity, and binding affinity of the copolymer, to synergistically enhance adsorption and regeneration. P(TMAx‐co‐TMPMA1−x) removes a model perfluorinated compound (perfluorooctanoic acid (PFOA)) with a high uptake capacity (>1000 mg g−1) and separation factors (500 vs chloride), and demonstrates exceptional removal efficiencies in diverse per‐ and polyfluoroalkyl substances (PFAS) and halogenated aromatic compounds, in various water matrices. Integration with a boron‐doped diamond electrode allows for tandem separation and destruction of pollutants within the same electrochemical cell, enabling the energy integration of the separation step with the catalytic degradation step. The study demonstrates for the first time the tuning of redox‐copolymers for selective remediation of organic anions, and integration with an advanced electrochemical oxidation process for energy‐efficient water purification.more » « less
-
Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations.more » « less
-
Abstract Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements.more » « less
-
Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.more » « less
An official website of the United States government
