skip to main content


Title: Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels
Abstract

Aerogels are considered ideal candidates for various applications, because of their low bulk density, highly porous nature, and functional performance. However, the time intensive nature of the complex fabrication process limits their potential application in various fields. Recently, incorporation of a fibrous network has resulted in production of aerogels with improved properties and functionalities. A facile approach is presented to fabricate hybrid sol–gel electrospun silica‐cellulose diacetate (CDA)‐based nanofibers to generate thermally and mechanically stable nanofiber aerogels. Thermal treatment results in gluing the silica‐CDA network strongly together thereby enhancing aerogel mechanical stability and hydrophobicity without compromising their highly porous nature (>98%) and low bulk density (≈10 mg cm−3). X‐ray photoelectron spectroscopy and in situ Fourier‐transform infrared studies demonstrate the development of strong bonds between silica and the CDA network, which result in the fabrication of cross‐linked structure responsible for their mechanical and thermal robustness and enhanced affinity for oils. Superhydrophobic nature and high oleophilicity of the hybrid aerogels enable them to be ideal candidates for oil spill cleaning, while their flame retardancy and low thermal conductivity can be explored in various applications requiring stability at high temperatures.

 
more » « less
NSF-PAR ID:
10458876
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
5
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Aerogels are highly porous structures produced by replacing the liquid solvent of a gel with air without causing a collapse in the solid network. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate 3D aerogels with customized geometries specific to their applications, designed pore morphologies, multimaterial structures, etc. To date, three major AM technologies (extrusion, inkjet, and stereolithography) followed by a drying process have been proposed to additively manufacture 3D functional aerogels. 3D‐printed aerogels and porous scaffolds showed great promise for a variety of applications, including tissue engineering, electrochemical energy storage, controlled drug delivery, sensing, and soft robotics. In this review, the details of steps included in the AM of aerogels and porous scaffolds are discussed, and a general frame is provided for AM of those. Then, the different postprinting processes are addressed to achieve the porosity (after drying); and mechanical strength, functionality, or both (after postdrying thermal or chemical treatments) are provided. Furthermore, the applications of the 3D‐printed aerogels/porous scaffolds made from a variety of materials are also highlighted. The review is concluded with the current challenges and an outlook for the next generation of 3D‐printed aerogels and porous scaffolds.

     
    more » « less
  2. Abstract

    Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre‐prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room‐temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer‐wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze‐drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0–74.8%) and densities (0.345–0.684 g cm−3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.

     
    more » « less
  3. Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

     
    more » « less
  4. Abstract

    Tailoring thermal transport by structural parameters could result in mechanically fragile and brittle networks. An indispensable goal is to design hierarchical architecture materials that combine thermal and mechanical properties in a continuous and cohesive network. A promising strategy to create such a hierarchical network targets additive manufacturing of hybrid porous voxels at nanoscale. Here we describe the convergence of agile additive manufacturing of porous hybrid voxels to tailor hierarchically and mechanically tunable objects. In one strategy, the uniformly distributed porous silica voxels, which form the basis for the control of thermal transport, are non-covalently interfaced with polymeric networks, yielding hierarchic super-elastic architectures with thermal insulation properties. Another additive strategy for achieving mechanical strength involves the versatile orthogonal surface hybridization of porous silica voxels retains its low thermal conductivity of 19.1 mW m−1 K−1, flexible compressive recovery strain (85%), and tailored mechanical strength from 71.6 kPa to 1.5 MPa. The printed lightweight high-fidelity objects promise thermal aging mitigation for lithium-ion batteries, providing a thermal management pathway using 3D printed silica objects.

     
    more » « less
  5. null (Ed.)
    Abstract The conventional manufacturing processes of aerogel insulation material is largely relying on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties are also examined. The proposed approach is found to have 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1. 
    more » « less