Abstract We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1grizand Zwicky Transient Facility (ZTF)grphotometry of 1975 transients with host–galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reachingz≈ 0.5. We present relative SN rates from YSE’s magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNe Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.
more »
« less
Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift Estimates via Deep Learning
Abstract Upcoming photometric surveys will discover tens of thousands of Type Ia supernovae (SNe Ia), vastly outpacing the capacity of our spectroscopic resources. In order to maximize the scientific return of these observations in the absence of spectroscopic information, we must accurately extract key parameters, such as SN redshifts, with photometric information alone. We present Photo-zSNthesis, a convolutional neural network-based method for predicting full redshift probability distributions from multi-band supernova lightcurves, tested on both simulated Sloan Digital Sky Survey (SDSS) and Vera C. Rubin Legacy Survey of Space and Time data as well as observed SDSS SNe. We show major improvements over predictions from existing methods on both simulations and real observations as well as minimal redshift-dependent bias, which is a challenge due to selection effects, e.g., Malmquist bias. Specifically, we show a 61× improvement in prediction bias 〈Δz〉 on PLAsTiCC simulations and 5× improvement on real SDSS data compared to results from a widely used photometric redshift estimator, LCFIT+Z. The PDFs produced by this method are well constrained and will maximize the cosmological constraining power of photometric SNe Ia samples.
more »
« less
- Award ID(s):
- 2108094
- PAR ID:
- 10458880
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 201
- Size(s):
- Article No. 201
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance–redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here, we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light curve in combination with Gaussian and full $p(z)$ priors from host-galaxy photo-z estimates. Using the DES 5-yr photometrically classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3 × 2 point analyses. With detailed catalogue-level simulations of the DES 5-yr sample, we find that the simulated w can be recovered within $$\pm 0.02$$ when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within $${\sim} 1\sigma$$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses.more » « less
-
Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.more » « less
-
Abstract With the advent of the Vera C. Rubin Observatory, the discovery rate of supernovae (SNe) will surpass the rate of SNe with real time spectroscopic follow-up by 3 orders of magnitude. Accurate photometric classifiers are essential to both select interesting events for follow-up in real time and for archival population-level studies. In this work, we investigate the impact of observable host-galaxy information on the classification of SNe, both with and without additional light-curve and redshift information. We find that host-galaxy information alone can successfully isolate relatively pure (>90%) samples of Type Ia SNe with or without redshift information. With redshift information, we can additionally produce somewhat pure (>70%) samples of Type II SNe and superluminous SNe. Additionally with redshift information, host-galaxy properties do not significantly improve the accuracy of SN classification when paired with complete light curves. In the absence of redshift information, however, galaxy properties significantly increase the accuracy of photometric classification. As a part of this analysis, we present the first formal application of a new objective function, the weighted hierarchical cross entropy, to the problem of SN classification. This objective function more naturally accounts for the hierarchical nature of SN classes and, more broadly, transients. Finally, we present a new set of SN classifications for the Pan-STARRS Medium Deep Survey of SNe that lack spectroscopic redshift, increasing the full photometric sample to >4400 events.more » « less
-
ABSTRACT We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple one-parameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find that magnification and lensing contribute $$\sim 2\!-\!18~{{\ \rm per\ cent}}$$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be $$A_1=0.07^{+0.32}_{-0.42}$$ (|A1| < 0.78 at 95 per cent CL).more » « less
An official website of the United States government
