skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced Ionic/Electronic Transport in Nano‐TiO 2 /Sheared CNT Composite Electrode for Na + Insertion‐based Hybrid Ion‐Capacitors
Abstract Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1at a 1 C charge/discharge rate and a capacity of 136 mAh g−1at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+conductivity of the TiO2/SCNT architecture.  more » « less
Award ID(s):
1742828
PAR ID:
10458922
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
5
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dual‐ion hybrid capacitors (DIHCs) are a promising class of electrochemical energy storage devices intermediate between batteries and supercapacitors, exhibiting both high energy and power density, and generalizable across wide chemistries beyond lithium. In this study, a model carbon framework material with a periodic structure containing exclusively 1.2 nm width pores, zeolite‐templated carbon (ZTC), was investigated as the positive electrode for the storage of a range of anions relevant to DIHC chemistries. Screening experiments were carried out across 21 electrolyte compositions within a common stable potential window of 3.0–4.0 V vs. Li/Li+to determine trends in capacity as a function of anion and solvent properties. To achieve fast rate capability, a binary solvent balancing a high dielectric constant with a low viscosity and small molecular size was used; optimized full‐cells based on LiPF6in binary electrolyte exhibited 146 Wh kg−1and >4000 W kg−1energy and power densities, respectively. 
    more » « less
  2. Abstract The growing demand for bioelectronics has generated widespread interest in implantable energy storage. These implantable bioelectronic devices, powered by a complementary battery/capacitor system, have faced difficulty in miniaturization without compromising their functionality. This paper reports on the development of a promising high‐rate cathode material for implantable power sources based on Li‐exchanged Na1.5VOPO4F0.5anchored on reduced graphene oxide (LNVOPF‐rGO). LNVOPF is unique in that it offers dual charge storage mechanisms, which enable it to exhibit mixed battery/capacitor electrochemical behavior. In this work, electrochemical Li‐ion exchange of the LNVOPF structure is characterized by operando X‐ray diffraction. Through designed nanostructuring, the charge storage kinetics of LNVOPF are improved, as reflected in the stored capacity of 107 mAh g−1at 20C. A practical full cell device composed of LNVOPF and T‐Nb2O5, which serves as a pseudocapacitive anode, is fabricated to demonstrate not only high energy/power density storage (100 Wh kg−1at 4000 W kg−1) but also reliable pulse capability and biocompatibility, a desirable combination for applications in biostimulating devices. This work underscores the potential of miniaturizing biomedical devices by replacing a conventional battery/capacitor couple with a single power source. 
    more » « less
  3. Abstract All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g−1at a current density of 1 A g−1and the GNR/Bi2Se3composite electrode exhibits a specific capacity of 100.2 mAh g−1at a current density of 0.5 A g−1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm−1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg−1at the power density of 559 W kg−1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage. 
    more » « less
  4. Abstract A stable lean‐electrolyte operating lithium–sulfur (Li–S) battery based on a cathode of Li2S in situ electrocatalytically deposited from L2S8catholyte onto a support of metallic molybdenum disulfide (1T‐MoS2) on carbon cloth (CC) is created. The 1T‐MoS2significantly accelerates the conversion Li2S8catholyte to Li2S, chemically adsorbs lithium polysulfide (LiPSs) from solution, and suppresses crossover of the LiPSs to the anode. These experimental findings are explained by density functional theory calculations that show that 1T‐MoS2gives rise to strong adsorption of polysulfides on its surface and is electrocatalytic for the targeted reversible Li–S conversion reactions. The CC/1T‐MoS2electrode in a Li–S battery delivers an initial capacity of 1238 mAh g−1, with a low capacity fade of only 0.051% per cycle over 500 cycles at 0.5C. Even at a high sulfur loading (4.4 mg cm−2) and low electrolyte/S (E/S) ratio of 3.7 µL mg−1, the battery achieves an initial reversible capacity of 1176 mA h g−1at 0.5C, with 87% capacity retention after 160 cycles. The post 500 cycles Li metal opposing 1T‐MoS2is substantially smoother than the Li opposing CC, with XPS supporting the role of 1T‐MoS2in inhibiting LiPSs crossover. 
    more » « less
  5. Abstract Sodium all‐solid‐state batteries (NaSSBs) with an alloy‐type anode (e.g., Sn and Sb) offer superior capacity and energy density compared to hard carbon anode. However, the irreversible loss of Na+at the alloy anode during the initial cycle results in diminished capacity and stability, impairing full‐cell performance. This study presents an easy‐to‐implement cathode presodiation strategy by employing a Na‐rich material to address these challenges. Leveraging the high theoretical capacity and suitable voltage window, Na2S is chosen as the Na donor, which is activated by creating a mixed electron‐ion conducting network, delivering a high capacity of 511.7 mAh g−1. By adding a small amount (i.e., 3 wt.%) of Na2S to the cathode composite, a NaCrO2|| Sn full cell demonstrated capacity improvement from 90.8 to 118.2 mAh g−1(based on cathode mass). The capacity‐balanced full cell can thus cycle to more than 300 times with >90% capacity retention. This work provides a practical solution to enhance the full‐cell performance and advance the transformation from half‐cell to full‐cell applications of NaSSBs. 
    more » « less