skip to main content


Title: All‐Solid‐State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive Composites Electrolytes
Abstract

All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g−1at a current density of 1 A g−1and the GNR/Bi2Se3composite electrode exhibits a specific capacity of 100.2 mAh g−1at a current density of 0.5 A g−1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm−1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg−1at the power density of 559 W kg−1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage.

 
more » « less
Award ID(s):
1903303
NSF-PAR ID:
10451049
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
38
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1at a 1 C charge/discharge rate and a capacity of 136 mAh g−1at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+conductivity of the TiO2/SCNT architecture.

     
    more » « less
  3. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials.

     
    more » « less
  4. Abstract

    Solid‐state lithium (Li) metal batteries (LMBs) have been developed as a promising replacement for conventional Li‐ion batteries due to their potential for higher energy. However, the current solid‐state electrolytes used in LMBs have limitations regarding mechanical and electrochemical properties and interfacial stability. Here, a fluorine (F)‐containing solid polymer electrolyte (SPE) having a bi‐continuous structure of F‐containing elastomers and plastic crystals is reported. The trifluoroethyl acrylate‐based SPE (T‐SPE) exhibits high ionic conductivity over 10−3 S cm−1, superior mechanical elasticity, and robust LiF‐rich interphases at both the Li metal anode and the LiNi0.83Mn0.06Co0.11O2cathode. Full cells with thin T‐SPEs and low negative/positive capacity ratios below 0.5 at the high‐operating voltage of 4.5 V demonstrate a high specific energy of 538 Wh kganode+cathode+electrolyte−1and maintain 393 Wh kg−1at a high specific power of 804 W kganode+cathode+electrolyte−1. The F‐containing phase‐separated SPE system provides a powerful strategy for achieving high‐energy and ‐power solid‐state LMBs.

     
    more » « less
  5. Abstract

    Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VOxelectrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOxelectrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOxsymmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOxSSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithRct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOxSSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.

     
    more » « less