Increasing glacial discharge can lower salinity and alter organic matter (OM) supply in fjords, but assessing the biogeochemical effects of enhanced freshwater fluxes requires understanding of microbial interactions with OM across salinity gradients. Here, we examined microbial enzymatic capabilities—in bulk waters (nonsize‐fractionated) and on particles (≥ 1.6
- Award ID(s):
- 1736772
- PAR ID:
- 10458926
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 77-95
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Oceanic bacterial communities process a major fraction of marine organiccarbon. A substantial portion of this carbon transformation occurs in themesopelagic zone, and a further fraction fuels bacteria in the bathypelagiczone. However, the capabilities and limitations of the diverse microbialcommunities at these depths to degrade high-molecular-weight (HMW) organicmatter are not well constrained. Here, we compared the responses of distinctmicrobial communities from North Atlantic epipelagic (0–200 m), mesopelagic(200–1000 m), and bathypelagic (1000–4000 m) waters at two open-oceanstations to the same input of diatom-derived HMW particulate and dissolvedorganic matter. Microbial community composition and functional responses tothe input of HMW organic matter – as measured by polysaccharide hydrolase,glucosidase, and peptidase activities – were very similar between thestations, which were separated by 1370 km but showed distinct patterns withdepth. Changes in microbial community composition coincided with changes inenzymatic activities: as bacterial community composition changed in responseto the addition of HMW organic matter, the rate and spectrum of enzymaticactivities increased. In epipelagic mesocosms, the spectrum of peptidaseactivities became especially broad and glucosidase activities were veryhigh, a pattern not seen at other depths, which, in contrast, were dominatedby leucine aminopeptidase and had much lower peptidase and glucosidase ratesin general. The spectrum of polysaccharide hydrolase activities was enhancedparticularly in epipelagic and mesopelagic mesocosms, with fewerenhancements in rates or spectrum in bathypelagic waters. The timing andmagnitude of these distinct functional responses to the same HMW organicmatter varied with depth. Our results highlight the importance of residencetimes at specific depths in determining the nature and quantity of organicmatter reaching the deep sea.more » « less
-
Summary The extent to which differences in microbial community structure result in variations in organic matter (OM) degradation is not well understood. Here, we tested the hypothesis that distinct marine microbial communities from North Atlantic surface and bottom waters would exhibit varying compositional succession and functional shifts in response to the same pool of complex high molecular weight (HMW‐OM). We also hypothesized that microbial communities would produce a broader spectrum of enzymes upon exposure to HMW‐OM, indicating a greater potential to degrade these compounds than reflected by initial enzymatic activities. Our results show that community succession in amended mesocosms was congruent with cell growth, increased bacterial production and most notably, with substantial shifts in enzymatic activities. In all amended mesocosms, closely related taxa that were initially rare became dominant at time frames during which a broader spectrum of active enzymes were detected compared to initial timepoints, indicating a similar response among different communities. However, succession on the whole‐community level, and the rates, spectra and progression of enzymatic activities, reveal robust differences among distinct communities from discrete water masses. These results underscore the crucial role of rare bacterial taxa in ocean carbon cycling and the importance of bacterial community structure for HMW‐OM degradation.
-
Abstract Freshwater from the Greenland Ice Sheet is routed to the ocean through narrow fjords along the coastline where it impacts ecosystems both within the fjord and on the continental shelf, regional circulation, and potentially the global overturning circulation. However, the timing of freshwater export is sensitive to the residence time of waters within glacial fjords. Here, we present evidence of seasonal freshwater storage in a tidewater glacial fjord using hydrographic and velocity data collected over 10 days during the summers of 2012 and 2013 in Saqqarleq (SQ), a midsize fjord in west Greenland. The data revealed a rapid freshening trend of −0.05 ± 0.01 and −0.04 ± 0.01 g kg −1 day −1 in 2012 and 2013, respectively, within the intermediate layer of the fjord (15–100 m) less than 2.5 km from the glacier terminus. The freshening trend is driven, in part, by the downward mixing of outflowing glacially modified water near the surface and increasingly stratifies the fjord from the surface downward over the summer melt season. We construct a box model that recreates the first-order dynamics of the fjord and describes freshwater storage as a balance between friction and density-driven exchange outside the fjord. The model can be used to diagnose the time scale for this balance to be reached, and for SQ we find a month lag between subglacial meltwater discharge and net freshwater export. These results indicate a fjord-induced delay in freshwater export to the ocean that should be represented in large-scale models seeking to understand the impact of Greenland freshwater on the regional climate system.more » « less
-
Fjords along the western Antarctic Peninsula are episodically exposed to strong winds flowing down marine-terminating glaciers and out over the ocean. These wind events could potentially be an important mechanism for the ventilation of fjord waters. A strong wind event was observed in Andvord Bay in December 2015, and was associated with significant increases in upper-ocean salinity. We examine the dynamical impacts of such wind events during the ice-free summer season using a numerical model. Passive tracers are used to identify water mass pathways and quantify exchange with the outer ocean. Upwelling and outflow in the model fjord generate an average salinity increase of 0.3 in the upper ocean during the event, similar to observations from Andvord Bay. Down-fjord wind events are a highly efficient mechanism for flushing out the upper fjord waters, but have little net impact on deep waters in the inner fjord. As such, summer episodic wind events likely have a large effect on fjord phytoplankton dynamics and export of glacially modified upper waters, but are an unlikely mechanism for the replenishment of deep basin waters and oceanic heat transport toward inner-fjord glaciers.
-
Abstract Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.