Abstract Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allows our models to infer the value of Ω m , at fixed Ω b , with a ∼10% precision, while no constraint can be placed on σ 8 . Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, z ≤ 3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Ω m . We believe that our results can be explained by considering that changes in the value of Ω m , or potentially Ω b /Ω m , affect the dark matter content of galaxies, which leaves a signature in galaxy properties distinct from the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.
more »
« less
Cosmology with One Galaxy? The ASTRID Model and Robustness
Abstract Recent work has pointed out the potential existence of a tight relation between the cosmological parameter Ω m , at fixed Ω b , and the properties of individual galaxies in state-of-the-art cosmological hydrodynamic simulations. In this paper, we investigate whether such a relation also holds for galaxies from simulations run with a different code that makes use of a distinct subgrid physics: Astrid. We also find that in this case, neural networks are able to infer the value of Ω m with a ∼10% precision from the properties of individual galaxies, while accounting for astrophysics uncertainties, as modeled in Cosmology and Astrophysics with MachinE Learning (CAMELS). This tight relationship is present at all considered redshifts, z ≤ 3, and the stellar mass, the stellar metallicity, and the maximum circular velocity are among the most important galaxy properties behind the relation. In order to use this method with real galaxies, one needs to quantify its robustness: the accuracy of the model when tested on galaxies generated by codes different from the one used for training. We quantify the robustness of the models by testing them on galaxies from four different codes: IllustrisTNG, SIMBA, Astrid, and Magneticum. We show that the models perform well on a large fraction of the galaxies, but fail dramatically on a small fraction of them. Removing these outliers significantly improves the accuracy of the models across simulation codes.
more »
« less
- Award ID(s):
- 2108944
- PAR ID:
- 10458995
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 125
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent works have discovered a relatively tight correlation between Ωmand the properties of individual simulated galaxies. Because of this, it has been shown that constraints on Ωmcan be placed using the properties of individual galaxies while accounting for uncertainties in astrophysical processes such as feedback from supernovae and active galactic nuclei. In this work, we quantify whether using the properties of multiple galaxies simultaneously can tighten those constraints. For this, we train neural networks to perform likelihood-free inference on the value of two cosmological parameters (Ωmandσ8) and four astrophysical parameters using the properties of several galaxies from thousands of hydrodynamic simulations of the CAMELS project. We find that using properties of more than one galaxy increases the precision of the Ωminference. Furthermore, using multiple galaxies enables the inference of other parameters that were poorly constrained with one single galaxy. We show that the same subset of galaxy properties are responsible for the constraints on Ωmfrom one and multiple galaxies. Finally, we quantify the robustness of the model and find that without identifying the model range of validity, the model does not perform well when tested on galaxies from other galaxy formation models.more » « less
-
Abstract We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny ( 25 h − 1 Mpc ) 3 volumes our models can infer the value of Ω m with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc.more » « less
-
Abstract We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs that vary three cosmological parameters (Ωm,σ8, Ωb) and four parameters controlling stellar and active galactic nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites, we show that building robust machine-learning models favors training and testing on the largest possible diversity of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer cosmological parameters using the high-dimensional TNG-SB28 simulation set.more » « less
-
Abstract Understanding the halo–galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a ∼0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub ( https://github.com/PabloVD/HaloGraphNet ).more » « less