Abstract Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allows our models to infer the value of Ω m , at fixed Ω b , with a ∼10% precision, while no constraint can be placed on σ 8 . Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, z ≤ 3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Ω m . We believe that our results can be explained by considering that changes in the value of Ω m , or potentially Ω b /Ω m , affect the dark matter content of galaxies, which leaves a signature in galaxy properties distinct from the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics. 
                        more » 
                        « less   
                    
                            
                            Cosmology with One Galaxy? The ASTRID Model and Robustness
                        
                    
    
            Abstract Recent work has pointed out the potential existence of a tight relation between the cosmological parameter Ω m , at fixed Ω b , and the properties of individual galaxies in state-of-the-art cosmological hydrodynamic simulations. In this paper, we investigate whether such a relation also holds for galaxies from simulations run with a different code that makes use of a distinct subgrid physics: Astrid. We also find that in this case, neural networks are able to infer the value of Ω m with a ∼10% precision from the properties of individual galaxies, while accounting for astrophysics uncertainties, as modeled in Cosmology and Astrophysics with MachinE Learning (CAMELS). This tight relationship is present at all considered redshifts, z ≤ 3, and the stellar mass, the stellar metallicity, and the maximum circular velocity are among the most important galaxy properties behind the relation. In order to use this method with real galaxies, one needs to quantify its robustness: the accuracy of the model when tested on galaxies generated by codes different from the one used for training. We quantify the robustness of the models by testing them on galaxies from four different codes: IllustrisTNG, SIMBA, Astrid, and Magneticum. We show that the models perform well on a large fraction of the galaxies, but fail dramatically on a small fraction of them. Removing these outliers significantly improves the accuracy of the models across simulation codes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2108944
- PAR ID:
- 10458995
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 125
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Recent works have discovered a relatively tight correlation between Ωmand the properties of individual simulated galaxies. Because of this, it has been shown that constraints on Ωmcan be placed using the properties of individual galaxies while accounting for uncertainties in astrophysical processes such as feedback from supernovae and active galactic nuclei. In this work, we quantify whether using the properties of multiple galaxies simultaneously can tighten those constraints. For this, we train neural networks to perform likelihood-free inference on the value of two cosmological parameters (Ωmandσ8) and four astrophysical parameters using the properties of several galaxies from thousands of hydrodynamic simulations of the CAMELS project. We find that using properties of more than one galaxy increases the precision of the Ωminference. Furthermore, using multiple galaxies enables the inference of other parameters that were poorly constrained with one single galaxy. We show that the same subset of galaxy properties are responsible for the constraints on Ωmfrom one and multiple galaxies. Finally, we quantify the robustness of the model and find that without identifying the model range of validity, the model does not perform well when tested on galaxies from other galaxy formation models.more » « less
- 
            Abstract We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny ( 25 h − 1 Mpc ) 3 volumes our models can infer the value of Ω m with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc.more » « less
- 
            Abstract We discover analytic equations that can infer the value of Ωmfrom the positions and velocity moduli of halo and galaxy catalogs. The equations are derived by combining a tailored graph neural network (GNN) architecture with symbolic regression. We first train the GNN on dark matter halos from GadgetN-body simulations to perform field-level likelihood-free inference, and show that our model can infer Ωmwith ∼6% accuracy from halo catalogs of thousands ofN-body simulations run with six different codes: Abacus, CUBEP3M, Gadget, Enzo, PKDGrav3, and Ramses. By applying symbolic regression to the different parts comprising the GNN, we derive equations that can predict Ωmfrom halo catalogs of simulations run with all of the above codes with accuracies similar to those of the GNN. We show that, by tuning a single free parameter, our equations can also infer the value of Ωmfrom galaxy catalogs of thousands of state-of-the-art hydrodynamic simulations of the CAMELS project, each with a different astrophysics model, run with five distinct codes that employ different subgrid physics: IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE. Furthermore, the equations also perform well when tested on galaxy catalogs from simulations covering a vast region in parameter space that samples variations in 5 cosmological and 23 astrophysical parameters. We speculate that the equations may reflect the existence of a fundamental physics relation between the phase-space distribution of generic tracers and Ωm, one that is not affected by galaxy formation physics down to scales as small as 10h−1kpc.more » « less
- 
            Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    