skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copper(II) halide complexes of aminopyridines: Synthesis, structure, and magnetic behavior of neutral compounds of 5-IAP: (5-IAP)2CuCl2·H2O, [(5-IAP)2CuBr2]2, (5-IAP)2CuBr2 and (5-IAP)3CuCl2·nH2O (5IAP = 2-amino-5-iodopyridine)
Award ID(s):
2018870
PAR ID:
10459018
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Polyhedron
Volume:
243
Issue:
C
ISSN:
0277-5387
Page Range / eLocation ID:
116562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractWe report on a series of detailed Breit-Pauli and Dirac B-spline R-matrix (DBSR) differential cross section (DCS) calculations for excitation of the$$5\,^2\textrm{S}_{1/2} \rightarrow 5\,^2\textrm{P}_{1/2}$$ 5 2 S 1 / 2 5 2 P 1 / 2 and$$5\,^2\textrm{S}_{1/2}\rightarrow 5\,^2\textrm{P}_{3/2}$$ 5 2 S 1 / 2 5 2 P 3 / 2 states in rubidium by 40 eV incident electrons. The early BP computations shown here were carried out with both 5 states and 12 states, while the DBSR models coupled 150 and 325 states, respectively. We also report corresponding results from a limited set of DCS measurements on the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$ 5 2 P 1 / 2 , 3 / 2 states, with the experimental data being restricted to the scattered electron angular range 2–$$10^\circ $$ 10 . Typically, good agreement is found between our calculated and measured DCS for excitation of the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$ 5 2 P 1 / 2 , 3 / 2 states, with best accord being found between the DBSR predictions and the measured data. The present theoretical and experimental results are also compared with predictions from earlier 40 eV calculations using the nonrelativistic Distorted-Wave Born Approximation and a Relativistic Distorted-Wave model. Graphic abstract 
    more » « less
  2. Abstract Here we report the synthesis of a novel reagent designed to prepare 2-amino-5-nitrothiazole (ANT) amides and analogues in high yields. N-(Trimethylsilyl)-2-amino-5-nitrothiazole (N-(TMS)-ANT) was prepared in 99% yield via silylation of ANT using 1,1,1,3,3,3-hexamethyldisilazane (HMDS), trimethylsilyl chloride (TMSCl), and catalytic saccharin. N-(TMS)-ANT is a superb reagent for the preparation of ANT amides in excellent yields. Notably, cyclic anhydrides and base-sensitive acyl chlorides can be utilized with N-(TMS)-ANT to furnish ANT amides that are difficult to prepare by previously reported procedures. 
    more » « less