skip to main content

Title: Examining the Communication Pattern of Transportation and Transit Agencies on Twitter: A Longitudinal Study in the Emergence of COVID-19 on Twitter

Social media can be a significant tool for transportation and transit agencies providing passengers with real-time information on traffic events. Moreover, COVID-19 and other limitations have compelled the agencies to engage with travelers online to promote public knowledge about COVID-related issues. It is, therefore, important to understand the agencies’ communication patterns. In this original study, the Twitter communication patterns of different transportation actors—types of message, communication sufficiency, consistency, and coordination—were examined using a social media data-driven approach applying text mining techniques and dynamic network analysis. A total of 850,000 tweets from 395 different transportation and transit agencies, starting in 2018 and the periods before, during and after the pandemic, were studied. Transportation agencies (federal, state, and city) were found to be less active on Twitter and mostly discussed safety measures, project management, and so forth. By contrast, the transit agencies (local bus and light, heavy, and commuter rail) were more active on Twitter and shared information about crashes, schedule information, passenger services, and so forth. Moreover, transportation agencies shared minimal pandemic safety information than transit agencies. Dynamic network analysis reveals interaction patterns among different transportation actors that are poorly connected and coordinated among themselves and with different health agencies (e.g., Centers for Disease Control and Prevention [CDC] and the Federal Emergency Management Agency [FEMA]). The outcome of this study provides understanding to improve existing communication plans, critical information dissemination efficacy, and the coordination of different transportation actors in general and during unprecedented health crises.

more » « less
Award ID(s):
2219618 2027360
Author(s) / Creator(s):
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Page Range / eLocation ID:
Article No. 036119812210825
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    During COVID-19, social media has played an important role for public health agencies and government stakeholders (i.e. actors) to disseminate information regarding situations, risks, and personal protective action inhibiting disease spread. However, there have been notable insufficient, incongruent, and inconsistent communications regarding the pandemic and its risks, which was especially salient at the early stages of the outbreak. Sufficiency, congruence and consistency in health risk communication have important implications for effective health safety instruction as well as critical content interpretability and recall. It also impacts individual- and community-level responses to information. This research employs text mining techniques and dynamic network analysis to investigate the actors’ risk and crisis communication on Twitter regarding message types, communication sufficiency, timeliness, congruence, consistency and coordination. We studied 13,598 pandemic-relevant tweets posted over January to April from 67 federal and state-level agencies and stakeholders in the U.S. The study annotates 16 categories of message types, analyzes their appearances and evolutions. The research then identifies inconsistencies and incongruencies on four critical topics and examines spatial disparities, timeliness, and sufficiency across actors and message types in communicating COVID-19. The network analysis also reveals increased communication coordination over time. The findings provide unprecedented insight of Twitter COVID-19 information dissemination which may help to inform public health agencies and governmental stakeholders future risk and crisis communication strategies related to global hazards in digital environments. 
    more » « less
  2. Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19. 
    more » « less
  3. Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during Hurricane Laura compounded by the COVID-19 pandemic. Hurricane Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana, U.S. Using an application programming interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Hurricane Laura. Online social networks were based on Twitter’s user influence feature (i.e., mentions or tags) that allows notification of other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into 21 components of various size, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those which heavily involved and closely interacted with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters. 
    more » « less
  4. Public sentiment toward the COVID-19 vaccine as expressed on social media can interfere with communication by public health agencies on the importance of getting vaccinated. We investigated Twitter data to understand differences in sentiment, moral values, and language use between political ideologies on the COVID-19 vaccine. We estimated political ideology, conducted a sentiment analysis, and guided by the tenets of moral foundations theory (MFT), we analyzed 262,267 English language tweets from the United States containing COVID-19 vaccine-related keywords between May 2020 and October 2021. We applied the Moral Foundations Dictionary and used topic modeling and Word2Vec to understand moral values and the context of words central to the discussion of the vaccine debate. A quadratic trend showed that extreme ideologies of both Liberals and Conservatives expressed a higher negative sentiment than Moderates, with Conservatives expressing more negative sentiment than Liberals. Compared to Conservative tweets, we found the expression of Liberal tweets to be rooted in a wider set of moral values, associated with moral foundations of care (getting the vaccine for protection), fairness (having access to the vaccine), liberty (related to the vaccine mandate), and authority (trusting the vaccine mandate imposed by the government). Conservative tweets were found to be associated with harm (around safety of the vaccine) and oppression (around the government mandate). Furthermore, political ideology was associated with the expression of different meanings for the same words, e.g. “science” and “death.” Our results inform public health outreach communication strategies to best tailor vaccine information to different groups. 
    more » « less
  5. Article Authors Metrics Comments Media Coverage Peer Review Abstract Introduction Methods Results Discussion Conclusions Supporting information References Reader Comments Figures Abstract Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less