skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An information theoretic method to resolve millisecond-scale spike timing precision in a comprehensive motor program
Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta . Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates.  more » « less
Award ID(s):
1806833
PAR ID:
10459089
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Latham, Peter E.
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1011170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sequences of action potentials, or spikes, carry information in the number of spikes and their timing. Spike timing codes are critical in many sensory systems, but there is now growing evidence that millisecond-scale changes in timing also carry information in motor brain regions, descending decision-making circuits, and individual motor units. Across all of the many signals that control a behavior, how ubiquitous, consistent, and coordinated are spike timing codes? Assessing these open questions ideally involves recording across the whole motor program with spike-level resolution. To do this, we took advantage of the relatively few motor units controlling the wings of a hawk moth, Manduca sexta . We simultaneously recorded nearly every action potential from all major wing muscles and the resulting forces in tethered flight. We found that timing encodes more information about turning behavior than spike count in every motor unit, even though there is sufficient variation in count alone. Flight muscles vary broadly in function as well as in the number and timing of spikes. Nonetheless, each muscle with multiple spikes consistently blends spike timing and count information in a 3:1 ratio. Coding strategies are consistent. Finally, we assess the coordination of muscles using pairwise redundancy measured through interaction information. Surprisingly, not only are all muscle pairs coordinated, but all coordination is accomplished almost exclusively through spike timing, not spike count. Spike timing codes are ubiquitous, consistent, and essential for coordination. 
    more » « less
  2. Traditional models of motor control typically operate in the domain of continuous signals such as spike rates, forces, and kinematics. However, there is growing evidence that precise spike timings encode significant information that coordinates and causally influences motor control. Some existing neural network models incorporate spike timing precision but they neither predict motor spikes coordinated across multiple motor units nor capture sensory-driven modulation of agile locomotor control. In this paper, we propose a visual encoder and model of a sensorimotor system based on a recurrent neural network (RNN) that utilizes spike timing encoding during smooth pursuit target tracking. We use this to predict a nearly complete, spike-resolved motor program of a hawkmoth that requires coordinated millisecond precision across 10 major flight motor units. Each motor unit enervates one muscle and utilizes both rate and timing encoding. Our model includes a motion detection mechanism inspired by the hawkmoth's compound eye, a convolutional encoder that compresses the sensory input, and a simple RNN that is sufficient to sequentially predict wingstroke-to-wingstroke modulation in millisecond-precise spike timings. The two-layer output architecture of the RNN separately predicts the occurrence and timing of each spike in the motor program. The dataset includes spikes recorded from all motor units during a tethered flight where the hawkmoth attends to a moving robotic flower, with a total of roughly 7000 wingstrokes from 16 trials on 5 hawkmoth subjects. Intra-trial and same-subject inter-trial predictions on the test data show that nearly every spike can be predicted within 2 ms of its known spike timing precision values. Whereas, spike occurrence prediction accuracy is about 90%. Overall, our model can predict the precise spike timing of a nearly complete motor program for hawkmoth flight with a precision comparable to that seen in agile flying insects. Such an encoding framework that captures visually-modulated precise spike timing codes and coordination can reveal how organisms process visual cues for agile movements. It can also drive the next generation of neuromorphic controllers for navigation in complex environments. 
    more » « less
  3. ABSTRACT Flying insects solve a daunting control problem of generating a patterned and precise motor program to stay airborne and generate agile maneuvers. In this motor program, each muscle encodes information about movement in precise spike timing down to the millisecond scale. Whereas individual muscles share information about movement, we do not know whether they have separable effects on an animal's motion, or whether muscles functionally interact such that the effects of any muscle's timing depend heavily on the state of the entire musculature. To answer these questions, we performed spike-resolution electromyography and electrical stimulation in the hawkmoth Manduca sexta during tethered flapping. We specifically explored how flight power muscles contribute to pitch control. Combining correlational study of visually induced turns with causal manipulation of spike timing, we discovered likely coordination patterns for pitch turns, and investigated whether these patterns can drive pitch control. We observed significant timing change of the main downstroke muscles, the dorsolongitudinal muscles (DLMs), associated with pitch turns. Causally inducing this timing change in the DLMs with electrical stimulation produced a consistent, mechanically relevant feature in pitch torque, establishing that power muscles in M. sexta have a control role in pitch. Because changes were evoked in only the DLMs, however, these pitch torque features left large unexplained variation. We found this unexplained variation indicates significant functional overlap in pitch control such that precise timing of one power muscle does not produce a precise turn, demonstrating the importance of coordination across the entire motor program for flight. 
    more » « less
  4. null (Ed.)
    Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase—and thus, the mechanical power output—of the wing steering muscles. 
    more » « less
  5. While insects such asDrosophilaare flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units—prominent components of the fly’s steering muscle system—modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies. 
    more » « less