skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Relative Spike-Timing Approach to Kernel-Based Decoding Demonstrated for Insect Flight Experiments
Spike train decoding is considered one of the grand challenges in reverse-engineering neural control systems as well as in the development of neuromorphic controllers. This paper presents a novel relative-time kernel design that accounts for not only individual spike train patterns, but also the relative spike timing between neuron pairs in the population. The new relative-time-kernel-based spike train decoding method proposed in this paper allows us to map the spike trains of a population of neurons onto a lower-dimensional manifold, in which continuous-time trajectories live. The effectiveness of our novel approach is demonstrated by comparing it with existing kernel-based and rate-based decoders, including the traditional reproducing kernel Hilbert space framework. In this paper, we use the data collected in hawk moth flower tracking experiments to test the importance of relative spike timing information for neural control, and focus on the problem of uncovering the mapping from the spike trains of ten primary flight muscles to the resulting forces and torques on the moth body. We show that our new relative-time-kernel-based decoder improves the prediction of the resulting forces and torques by up to 52.1 %. Our proposed relative-time-kernel-based decoder may be used to reverse-engineer neural control systems more accurately by incorporating precise relative spike timing information in spike trains.  more » « less
Award ID(s):
1806833
PAR ID:
10459096
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 International Joint Conference on Neural Networks (IJCNN)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The standard approach to fitting an autoregressive spike train model is to maximize the likelihood for one-step prediction. This maximum likelihood estimation (MLE) often leads to models that perform poorly when generating samples recursively for more than one time step. Moreover, the generated spike trains can fail to capture important features of the data and even show diverging firing rates. To alleviate this, we propose to directly minimize the divergence between neural recorded and model generated spike trains using spike train kernels. We develop a method that stochastically optimizes the maximum mean discrepancy induced by the kernel. Experiments performed on both real and synthetic neural data validate the proposed approach, showing that it leads to well-behaving models. Using different combinations of spike train kernels, we show that we can control the trade-off between different features which is critical for dealing with model-mismatch. 
    more » « less
  2. Sequences of action potentials, or spikes, carry information in the number of spikes and their timing. Spike timing codes are critical in many sensory systems, but there is now growing evidence that millisecond-scale changes in timing also carry information in motor brain regions, descending decision-making circuits, and individual motor units. Across all of the many signals that control a behavior, how ubiquitous, consistent, and coordinated are spike timing codes? Assessing these open questions ideally involves recording across the whole motor program with spike-level resolution. To do this, we took advantage of the relatively few motor units controlling the wings of a hawk moth, Manduca sexta . We simultaneously recorded nearly every action potential from all major wing muscles and the resulting forces in tethered flight. We found that timing encodes more information about turning behavior than spike count in every motor unit, even though there is sufficient variation in count alone. Flight muscles vary broadly in function as well as in the number and timing of spikes. Nonetheless, each muscle with multiple spikes consistently blends spike timing and count information in a 3:1 ratio. Coding strategies are consistent. Finally, we assess the coordination of muscles using pairwise redundancy measured through interaction information. Surprisingly, not only are all muscle pairs coordinated, but all coordination is accomplished almost exclusively through spike timing, not spike count. Spike timing codes are ubiquitous, consistent, and essential for coordination. 
    more » « less
  3. Neuromuscular injuries can impair hand function and profoundly impacting the quality of life. This has motivated the development of advanced assistive robotic hands. However, the current neural decoder systems are limited in their ability to provide dexterous control of these robotic hands. In this study, we propose a novel method for predicting the extension and flexion force of three individual fingers concurrently using high-density electromyogram (HD-EMG) signals. Our method employs two deep forest models, the flexor decoder and the extensor decoder, to extract relevant representations from the EMG amplitude features. The outputs of the two decoders are integrated through linear regression to predict the forces of the three fingers. The proposed method was evaluated on data from three subjects and the results showed that it consistently outperforms the conventional EMG amplitude-based approach in terms of prediction error and robustness across both target and non-target fingers. This work presents a promising neural decoding approach for intuitive and dexterous control of the fingertip forces of assistive robotic hands. 
    more » « less
  4. Latham, Peter E. (Ed.)
    Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta . Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates. 
    more » « less
  5. Traditional models of motor control typically operate in the domain of continuous signals such as spike rates, forces, and kinematics. However, there is growing evidence that precise spike timings encode significant information that coordinates and causally influences motor control. Some existing neural network models incorporate spike timing precision but they neither predict motor spikes coordinated across multiple motor units nor capture sensory-driven modulation of agile locomotor control. In this paper, we propose a visual encoder and model of a sensorimotor system based on a recurrent neural network (RNN) that utilizes spike timing encoding during smooth pursuit target tracking. We use this to predict a nearly complete, spike-resolved motor program of a hawkmoth that requires coordinated millisecond precision across 10 major flight motor units. Each motor unit enervates one muscle and utilizes both rate and timing encoding. Our model includes a motion detection mechanism inspired by the hawkmoth's compound eye, a convolutional encoder that compresses the sensory input, and a simple RNN that is sufficient to sequentially predict wingstroke-to-wingstroke modulation in millisecond-precise spike timings. The two-layer output architecture of the RNN separately predicts the occurrence and timing of each spike in the motor program. The dataset includes spikes recorded from all motor units during a tethered flight where the hawkmoth attends to a moving robotic flower, with a total of roughly 7000 wingstrokes from 16 trials on 5 hawkmoth subjects. Intra-trial and same-subject inter-trial predictions on the test data show that nearly every spike can be predicted within 2 ms of its known spike timing precision values. Whereas, spike occurrence prediction accuracy is about 90%. Overall, our model can predict the precise spike timing of a nearly complete motor program for hawkmoth flight with a precision comparable to that seen in agile flying insects. Such an encoding framework that captures visually-modulated precise spike timing codes and coordination can reveal how organisms process visual cues for agile movements. It can also drive the next generation of neuromorphic controllers for navigation in complex environments. 
    more » « less