skip to main content


This content will become publicly available on June 29, 2024

Title: Toward a 3D physical model of diffusive polymer chains
Recent studies in polymer physics have created macro-scale analogs to solute microscopic polymer chains like DNA by inducing diffusive motion on a chain of beads. These bead chains have persistence lengths of O(10) links and undergo diffusive motion under random fluctuations like vibration. We present a bead chain model within a new stochastic forcing system: an air fluidizing bed of granular media. A chain of spherical 6 mm resin beads crimped onto silk thread are buffeted randomly by the multiphase flow of grains and low density rising air “bubbles”. We “thermalize” bead chains of various lengths at different fluidizing airflow rates, while X-ray imaging captures a projection of the chains’ dynamics within the media. With modern 3D printing techniques, we can better represent complex polymers by geometrically varying bead connections and their relative strength, e.g., mimicking the variable stiffness between adjacent nucleotide pairs of DNA. We also develop Discrete Element Method (DEM) simulations to study the 3D motion of the bead chain, where the bead chain is represented by simulated spherical particles connected by linear and angular spring-like bonds. In experiment, we find that the velocity distributions of the beads follow exponential distributions rather than the Gaussian distributions expected from polymers in solution. Through use of the DEM simulation, we find that this difference can likely be attributed to the distributions of the forces imparted onto the chain from the fluidized bed environment. We anticipate expanding this study in the future to explore a wide range of chain composition and confinement geometry, which will provide insights into the physics of large biopolymers.  more » « less
Award ID(s):
1806833
NSF-PAR ID:
10459155
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
11
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Electronic biosensors for DNA detection typically utilize immobilized oligonucleotide probes on a signal transducer, which outputs an electronic signal when target molecules bind to probes. However, limitation in probe selectivity and variable levels of non-target material in complex biological samples can lead to nonspecific binding and reduced sensitivity. Here we introduce the integration of 2.8 μm paramagnetic beads with DNA fragments. We apply a custom-made microfluidic chip to detect DNA molecules bound to beads by measuring Impedance Peak Response (IPR) at multiple frequencies. Technical and analytical performance was evaluated using beads containing purified Polymerase Chain Reaction (PCR) products of different lengths (157, 300, 613 bp) with DNA concentration ranging from 0.039 amol to 7.8 fmol. Multi-frequency IPR correlated positively with DNA amounts and was used to calculate a DNA quantification score. The minimum DNA amount of a 300 bp fragment coupled on beads that could be robustly detected was 0.0039 fmol (1.54 fg or 4750 copies/bead). Additionally, our approach allowed distinguishing beads with similar molar concentration DNA fragments of different lengths. Using this impedance sensor, purified PCR products could be analyzed within ten minutes to determine DNA fragment length and quantity based on comparison to a known DNA standard. 
    more » « less
  2. The joint probability distribution of streamwise particle hop distance, lateral particle hop distance, and travel time constrains the relationships between topographic change and sediment transport at the granular scale. Previous studies have investigated the ensemble characteristics of particle motions over plane bed topography; however, it is unclear whether reported distributions remain valid when bedforms are present. Here, we present measurements of particle motion over bedform topography obtained in a laboratory flume and compare these to particle motions over plane bed topography with otherwise similar conditions. We find substantial differences in particle motion in the presence of bedforms that are relevant to macroscopic models of sediment transport. Most notably, bedforms increase the standard deviation of streamwise and lateral hop distances relative to the mean streamwise hop distance. This implies that bedforms increase the streamwise and lateral diffusion lengths and, equivalently, increase diffusive‐like fluxes.

     
    more » « less
  3. The structure and dynamics of polyelectrolytes differ from those of neutral polymers. How these differences affect the transport of anisotropic particles remains incompletely understood. Here, we investigate the transport of semiflexible M13 bacteriophage (phage) in aqueous semidilute solutions of sodium polystyrenesulfonate (PSS) with various ionic strengths using fluorescence microscopy. We tune the characteristic length scales of the PSS using two molecular weights of 68 and 2200 kDa and by varying the ionic strength of the solutions from 10–6 to 10–1 M. Phage exhibit diffusive dynamics across all polymer concentrations. For 2200 kDa PSS solutions, the phage dynamics monotonically deviate from the bulk prediction as polymer concentration increases and exhibit non-Gaussian distributions of displacements. Existing scaling theories can approximately collapse dynamics as a function of phage hydrodynamic radius to polymer size ratio Rh/ξ onto a master curve across polymer concentrations and ionic strengths. This partial collapse, however, does not follow the prediction for diffusion of isotropic particles in flexible Gaussian chains, suggesting the presence of multiple diffusive modes due to the anisotropic structure of the phage and the confining length scales set by the structure and dynamics of charged polymers. 
    more » « less
  4. The introduction of oligoether side chains onto a polymer backbone can help to stabilise polymeric dispersions in water without the necessity of surfactants or additives when conjugated polymer nanoparticles are prepared. A series of poly(3-hexylthiophene) (P3HT) derivatives with different content of a polar thiophene derivative 3-((2-methoxyethoxy)methyl)thiophene was interrogated to find the effect of the polar chains on the stability of the formed nanoparticles, as well as their structural, optical, electrochemical, and electrical properties. Findings indicated that incorporation of 10–20 percent of the polar side chain led to particles that are stable over a period of 42 days, with constant particle size and polydispersity, however the particles from the polymer with 30 percent polar side chain showed aggregation effects. The polymer dispersions showed a stronger solid-like behaviour in water with decreasing polar side chain content, while thin film deposition from water was found to afford globular morphologies and crystallites with more isotropic orientation compared to conventional solution-processed films. As a proof-of-principle, field-effect transistors were fabricated directly from the aqueous dispersions demonstrating that polymers with hydrophilic moieties can be processed in water without the requirement of surfactants. 
    more » « less
  5. null (Ed.)
    Three-dimensional (3D) printing allows for creation of patient-specific implants. However, development of new synthetic materials for 3D printing has been relatively slow with only a few polymers available for tissue engineering applications. Most of these polymers require harsh processing conditions like high temperatures and pressures or are mixed with a combination of leachable additives like plasticizers, initiators, crosslinkers, and solvents to enable 3D printing. Therefore, to propel the development of new polymers for ambient temperature, additive-free 3D printing it is necessary to systematically understand the relationship between the structure of a polymer with its 3D printability. Herein, three homopolyesters were synthesized, each with a common backbone but differing in the length of their saturated, aliphatic pendant chains with 2, 6, or 15 carbons. The physical properties such as the glass transition temperature ( T g ) and the rheological properties like shear thinning, temperature response, and stress relaxation were correlated to the individual polymer's 3D printability. The 3D printability of the polymers was assessed based on four criteria: ability to be extruded as continuous filaments, shape fidelity, the retention of printed shape, and the ability to form free hanging filaments. We observed that the polymers with longer side chains can be extruded at low temperature and pressure because the long side chains act as internal diluents and increase the flowability of the polymer. However, their ability to retain the 3D printed shape is adversely affected by the increase in side chain length, unless the side chains form ordered structures leading to immediate recovery of viscosity. The insight derived from the systematic investigation of the effect of polymer structure on their rheology and 3D printability can be used to rationally design other polymers for extrusion-based direct-write 3D printing. 
    more » « less