skip to main content


Title: Deep‐learning contact‐map guided protein structure prediction in CASP13
Abstract

We report the results of two fully automated structure prediction pipelines, “Zhang‐Server” and “QUARK”, in CASP13. The pipelines were built upon the C‐I‐TASSER and C‐QUARK programs, which in turn are based on I‐TASSER and QUARK but with three new modules: (a) a novel multiple sequence alignment (MSA) generation protocol to construct deep sequence‐profiles for contact prediction; (b) an improved meta‐method, NeBcon, which combines multiple contact predictors, including ResPRE that predicts contact‐maps by coupling precision‐matrices with deep residual convolutional neural‐networks; and (c) an optimized contact potential to guide structure assembly simulations. For 50 CASP13 FM domains that lacked homologous templates, average TM‐scores of the first models produced by C‐I‐TASSER and C‐QUARK were 28% and 56% higher than those constructed by I‐TASSER and QUARK, respectively. For the first time, contact‐map predictions demonstrated usefulness on TBM domains with close homologous templates, where TM‐scores of C‐I‐TASSER models were significantly higher than those of I‐TASSER models with aP‐value <.05. Detailed data analyses showed that the success of C‐I‐TASSER and C‐QUARK was mainly due to the increased accuracy of deep‐learning‐based contact‐maps, as well as the careful balance between sequence‐based contact restraints, threading templates, and generic knowledge‐based potentials. Nevertheless, challenges still remain for predicting quaternary structure of multi‐domain proteins, due to the difficulties in domain partitioning and domain reassembly. In addition, contact prediction in terminal regions was often unsatisfactory due to the sparsity of MSAs. Development of new contact‐based domain partitioning and assembly methods and training contact models on sparse MSAs may help address these issues.

 
more » « less
NSF-PAR ID:
10459180
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
87
Issue:
12
ISSN:
0887-3585
Page Range / eLocation ID:
p. 1149-1164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this article, we report 3D structure prediction results by two of our best server groups (“Zhang‐Server” and “QUARK”) in CASP14. These two servers were built based on the D‐I‐TASSER and D‐QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I‐TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact‐based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network‐based method, DeepPotential, to predict multiple spatial restraints by co‐evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM‐scores of the first models produced by D‐I‐TASSER and D‐QUARK were 96% and 112% higher than those constructed by I‐TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well‐tuned force field that combines spatial restraints, threading templates, and generic knowledge‐based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi‐domain proteins due to low accuracy in inter‐domain distance prediction and modeling protein domains from oligomer complexes, as the co‐evolutionary analysis cannot distinguish inter‐chain and intra‐chain distances. Specifically tuning the deep learning‐based predictors for multi‐domain targets and protein complexes may be helpful to address these issues.

     
    more » « less
  2. Abstract

    We report the results of residue‐residue contact prediction of a new pipeline built purely on the learning of coevolutionary features in the CASP13 experiment. For a query sequence, the pipeline starts with the collection of multiple sequence alignments (MSAs) from multiple genome and metagenome sequence databases using two complementary Hidden Markov Model (HMM)‐based searching tools. Three profile matrices, built on covariance, precision, and pseudolikelihood maximization respectively, are then created from the MSAs, which are used as the input features of a deep residual convolutional neural network architecture for contact‐map training and prediction. Two ensembling strategies have been proposed to integrate the matrix features through end‐to‐end training and stacking, resulting in two complementary programs called TripletRes and ResTriplet, respectively. For the 31 free‐modeling domains that do not have homologous templates in the PDB, TripletRes and ResTriplet generated comparable results with an average accuracy of 0.640 and 0.646, respectively, for the topL/5 long‐range predictions, where 71% and 74% of the cases have an accuracy above 0.5. Detailed data analyses showed that the strength of the pipeline is due to the sensitive MSA construction and the advanced strategies for coevolutionary feature ensembling. Domain splitting was also found to help enhance the contact prediction performance. Nevertheless, contact models for tail regions, which often involve a high number of alignment gaps, and for targets with few homologous sequences are still suboptimal. Development of new approaches where the model is specifically trained on these regions and targets might help address these problems.

     
    more » « less
  3. Abstract

    Sequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.

     
    more » « less
  4. Abstract

    We report the results of the “UM‐TBM” and “Zheng” groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D‐I‐TASSER and DMFold‐Multimer algorithms, respectively. For monomer structure prediction, D‐I‐TASSER introduced four new features during CASP15: (i) a multiple sequence alignment (MSA) generation protocol that combines multi‐source MSA searching and a structural modeling‐based MSA ranker; (ii) attention‐network based spatial restraints; (iii) a multi‐domain module containing domain partition and arrangement for domain‐level templates and spatial restraints; (iv) an optimized I‐TASSER‐based folding simulation system for full‐length model creation guided by a combination of deep learning restraints, threading alignments, and knowledge‐based potentials. For 47 free modeling targets in CASP15, the final models predicted by D‐I‐TASSER showed average TM‐score 19% higher than the standard AlphaFold2 program. We thus showed that traditional Monte Carlo‐based folding simulations, when appropriately coupled with deep learning algorithms, can generate models with improved accuracy over end‐to‐end deep learning methods alone. For protein complex structure prediction, DMFold‐Multimer generated models by integrating a new MSA generation algorithm (DeepMSA2) with the end‐to‐end modeling module from AlphaFold2‐Multimer. For the 38 complex targets, DMFold‐Multimer generated models with an average TM‐score of 0.83 and Interface Contact Score of 0.60, both significantly higher than those of competing complex prediction tools. Our analyses on complexes highlighted the critical role played by MSA generating, ranking, and pairing in protein complex structure prediction. We also discuss future room for improvement in the areas of viral protein modeling and complex model ranking.

     
    more » « less
  5. Abstract Motivation The success of genome sequencing techniques has resulted in rapid explosion of protein sequences. Collections of multiple homologous sequences can provide critical information to the modeling of structure and function of unknown proteins. There are however no standard and efficient pipeline available for sensitive multiple sequence alignment (MSA) collection. This is particularly challenging when large whole-genome and metagenome databases are involved. Results We developed DeepMSA, a new open-source method for sensitive MSA construction, which has homologous sequences and alignments created from multi-sources of whole-genome and metagenome databases through complementary hidden Markov model algorithms. The practical usefulness of the pipeline was examined in three large-scale benchmark experiments based on 614 non-redundant proteins. First, DeepMSA was utilized to generate MSAs for residue-level contact prediction by six coevolution and deep learning-based programs, which resulted in an accuracy increase in long-range contacts by up to 24.4% compared to the default programs. Next, multiple threading programs are performed for homologous structure identification, where the average TM-score of the template alignments has over 7.5% increases with the use of the new DeepMSA profiles. Finally, DeepMSA was used for secondary structure prediction and resulted in statistically significant improvements in the Q3 accuracy. It is noted that all these improvements were achieved without re-training the parameters and neural-network models, demonstrating the robustness and general usefulness of the DeepMSA in protein structural bioinformatics applications, especially for targets without homologous templates in the PDB library. Availability and implementation https://zhanglab.ccmb.med.umich.edu/DeepMSA/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less