Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the generaDanionella, Devario, andMicrodevariothat show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.
more »
« less
Thyroid hormone coordinates developmental trajectories but does not underlie developmental truncation in danionins
Abstract BackgroundDifferences in postembryonic developmental trajectories can profoundly alter adult phenotypes and life histories. Thyroid hormone (TH) regulates metamorphosis in many vertebrate taxa with multiphasic ecologies, and alterations to TH metabolism underlie notable cases of paedomorphosis in amphibians. We tested the requirement for TH in multiple postembryonic developmental processes in zebrafish, which has a monophasic ecology, and asked if TH production was compromised in paedomorphicDanionella. ResultsWe showed that TH regulates allometric growth in juvenile zebrafish, and inhibits relative head growth. The lateral line system showed differential requirements for TH: the hormone promotes canal neuromast formation and inhibits neuromast proliferation in the head, but causes expansion of the neuromast population in the trunk. WhileDanionellamorphology resembled that of larval zebrafish, the twoDanionellaspecies analyzed were not similar to hypothyroid zebrafish in their shape or neuromast distribution, and both possessed functional thyroid follicles. ConclusionsAlthough zebrafish do not undergo a discrete ecological transformation, we found that multiple tissues undergo transitions in developmental trajectories that are dependent on TH, suggesting the TH axis and its downstream pathways as likely targets for adaptation. Nonetheless, we found no evidence that evolutionary paedomorphosis inDanionellais the result of compromised TH production.
more »
« less
- Award ID(s):
- 1845513
- PAR ID:
- 10459240
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Developmental Dynamics
- Volume:
- 248
- Issue:
- 11
- ISSN:
- 1058-8388
- Format(s):
- Medium: X Size: p. 1144-1154
- Size(s):
- p. 1144-1154
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non‐metamorphic vertebrate, we tested zebrafish for developmental periods of TH‐induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late‐larval through adult stages under three developmental TH profiles. Under wild‐type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.more » « less
-
Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab—but not Thraa or Thrb—inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size—either through changes to TH metabolism or other hormone-independent pathways—can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.more » « less
-
Insufficient thyroid hormone (TH) during development results in permanent neurological deficits. These deficits are the result of neuroanatomical defects that include smaller brain, fewer parvalbumin neurons, and hypomyelination. Interestingly, insufficient insulin-like growth factor 1 (Igf-1) during development results in similar neuroanatomical defects to those reported for developmental hypothyroidism. Thyroid hormone is known to indirectly influence serum Igf-1 levels through its regulation of pituitary growth hormone (GH) secretion which stimulates hepatic Igf-1 production. Our lab and others have observed decreases of local brain-derived Igf-1 in the developing hypothyroid mouse brain. This observation suggests that deficits associated with low TH during development may be the result of altered brain-derived Igf-1. Considering this, we sought to determine whether ectopically expressing Igf-1 in the developing brain could rescue neuroanatomical defects associated with TH. To accomplish this, the tet-off transgenic system was used where mice harboring tetracycline transactivator protein driven by the human GFAP promoter (tTA-GFAP) were crossed with mice containing the human Igf-1cDNA under the control the TET response element (Igf1-pTRE) transgene. Double transgenic (dTg) offspring carrying both the tTA-GFAP and Igf1-TRE genes overexpress Igf-1 specifically in brain astrocytes. The timed-pregnant mice were treated with thyroid gland inhibitors from embryonic day 14.5 (E14.5) until postnatal day 14 (P14) to induce a hypothyroid state in pups. At P14, pups were weighed and sacrificed, trunk blood was collected, and brains were dissected, weighed, and immediately frozen. Hippocampal structure, known be disrupted by developmental hypothyroidism, was assessed by fluorescent imaging using DAPI staining. Our initial results indicate that ectopic expression of Igf-1 in the brain (dTg mice) rescues hypothyroidism-induced reductions in brain weight without increasing body weight. In addition, the ectopic expression of Igf-1 restored hypothyroidism-induced perturbations in dentate gyrus size. Ongoing studies are using quantitative real-time PCR on micro-dissected cortical and hippocampal samples, to quantify myelin associated glycoprotein and parvalbumin mRNAs. Taken together, our findings support the idea that ectopic brain-derived Igf-1 rescues neuroanatomical defects caused by hypothyroidism and implicates TH in the regulation of brain Igf-1.more » « less
-
Abstract Amphibians undergo a variety of post‐embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH‐based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question:“Are paedomorphs actual larvae?”. To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders.more » « less
An official website of the United States government
