skip to main content

Title: Active pollination drives selection for reduced pollen‐ovule ratios

Variation in pollen‐ovule ratios is thought to reflect the degree of pollen transfer efficiency—the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen‐ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient.


We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen‐ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister‐group comparisons to examine whether the shift to active pollination resulted in reduced pollen‐ovule ratios.


Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen‐ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen‐ovule ratio.


The results for active pollination systems support the general utility of pollen‐ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen‐ovule ratio.

more » « less
Award ID(s):
1655544 1556568
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Page Range / eLocation ID:
p. 164-170
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species interactions shape the evolution of traits, life histories and the pattern of speciation. What is less clear is whether certain types of species interaction are more or less likely to lead to phenotypic divergence among species. We used the brood pollination mutualism between yuccas and yucca moths to test how mutualistic (pollination) and antagonistic (oviposition) traits differ in the propensity to increase phenotypic divergence among pollinator moths. We measured traits of the tentacular mouthparts, structures used by females to actively pollinate flowers, as well as ovipositor traits to examine differences in the rate of evolution of these two suites of traits among pollinator species. Morphological analyses revealed two distinct groups of moths based on ovipositor morphology, but no such groupings were identified for tentacle morphology, even for moths that pollinated distantly related yuccas. In addition, ovipositor traits evolved at significantly faster rates than tentacular traits. These results support theoretical work suggesting that antagonism is more likely than mutualism to lead to phenotypic divergence.

    more » « less
  2. Premise

    Outcrossing species depend on pollen from conspecific individuals that may not be exposed to the same abiotic conditions as maternal plants. Additionally, many flowers receive heterospecific pollen, which can also influence seed production. Studies aimed to understand how abiotic conditions influence seed production tend to focus on maternal conditions and leave unexplored the effect of abiotic conditions experienced by pollen donors. We tested how water availability to pollen donors, both conspecific and heterospecific, influenced the seed production of recipient plants exposed to different water availability regimes.


    In a greenhouse setting we manipulated the water availability (low‐ or high‐water treatment) to potted recipient plants (Phacelia parryi), to conspecific pollen donors, and to heterospecific pollen donors (Brassica nigra). We hand pollinated recipient plants with different pollen mixes that represented all combinations of conspecific pollen mixed with heterospecific pollen. From these hand pollinations we determined the amount of pollen that was transferred, pollen volume, pollen shape, and seed production.


    Higher water availability to conspecific pollen donors led to higher seed production. Under low water availability to heterospecific pollen donors, seed production was unaffected by recipient or conspecific pollen donor treatment. Under high water availability to heterospecific pollen donors, seed production was highest when conspecific pollen donors and pollen recipients also received the high‐water treatment.


    Environmental conditions of pollen donors can influence the seed production of maternal plants. These results illustrate potential impacts of environmental heterogeneity on post‐pollination events that lead to seed production and thus impact a pollinator's contribution to plant fitness.

    more » « less
  3. Premise

    Multiple transitions from insect to wind pollination are associated with polyploidy and unisexual flowers inThalictrum(Ranunculaceae), yet the underlying genetics remains unknown. We generated a draft genome ofThalictrum thalictroides, a representative of a clade with ancestral floral traits (diploid, hermaphrodite, and insect pollinated) and a model for functional studies. Floral transcriptomes ofT. thalictroidesand of wind‐pollinated, andromonoeciousT. hernandeziiare presented as a resource to facilitate candidate gene discovery in flowers with different sexual and pollination systems.


    A draft genome ofT. thalictroidesand two floral transcriptomes ofT. thalictroidesandT. hernandeziiwere obtained from HiSeq 2000 Illumina sequencing and de novo assembly.


    TheT. thalictroidesde novo draft genome assembly consisted of 44,860 contigs (N50 = 12,761 bp, 243 Mbp total length) and contained 84.5% conserved embryophyte single‐copy genes. Floral transcriptomes contained representatives of most eukaryotic core genes, and most of their genes formed orthogroups.


    To validate the utility of these resources, potential candidate genes were identified for the different floral morphologies using stepwise data set comparisons. Single‐copy gene analysis and simple sequence repeat markers were also generated as a resource for population‐level and phylogenetic studies.

    more » « less
  4. Abstract

    A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diversification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolutionary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon. Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred, although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is consistent with predicted levels of diversity under stable macroevolutionary rates.

    more » « less
  5. Abstract

    Floral structures, such as stamen appendages, play crucial roles in pollinator attraction, pollen release dynamics and, ultimately, the reproductive success of plants. The pollen‐rewarding, bee buzz‐pollinated flowers ofMelastomataceaeoften bear conspicuous staminal appendages. Surprisingly, their functional role in the pollination process remains largely unclear. We useHuberia bradeanaBochorny & R. Goldenb. (Melastomataceae) with conspicuously elongated, twisted stamen appendages to investigate their functional role in the pollination process.

    We studied the effect of stamen appendages on pollinator behaviour and reproductive success by comparing manipulated flowers (appendages removed) with unmanipulated flowers. To assess bee pollinator behaviour, we measured three properties of buzzes (vibrations) produced by bees onHuberiaflowers: frequency, duration and number of buzzes per flower visit. We measured male and female reproductive success by monitoring pollen release and deposition after single bee visits. Finally, we used artificial vibrations and laser vibrometry to assess how flower vibrational properties change with the removal of stamen appendages.

    Our results show that the absence of staminal appendages does not modify bee buzzing behaviour. Pollen release was higher in unmanipulated flowers, but stigmatic pollen loads differ only marginally between the two treatments. We also detected lower vibration amplitudes in intact flowers as compared to manipulated flowers in artificial vibration experiments.

    The presence of connective appendages are crucial in transmitting vibrations and assuring optimal pollen release. Therefore, we propose that the high diversity of colours, shapes and sizes of connective appendages in buzz‐pollinated flowers may have evolved by selection through male fitness.

    more » « less