Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices.
more »
« less
2D Materials for Terahertz Modulation
Abstract Terahertz waves spanning over the 0.1 to 10 THz region of the electromagnetic spectrum have attracted significant attention owing to a variety of potential applications such as short‐range high‐speed data transmission, noninvasive screening and detection, materials characterization, spectroscopy, etc. This has resulted in massive strides in the development of essential system components such as broadband terahertz sources, detector arrays with high responsivity, as well as modulators. In parallel to this, spurred by the isolation of graphene in 2004, a tremendous interest in 2D systems has led to the rapid exploration and development of a library of atomically thin materials. These can exhibit a myriad of electrical and optical functionalities stemming from semiconducting, insulating, semi‐metallic, or superconducting behavior. In this context, since the early 2010s, 2D materials have been actively explored for active control of terahertz electromagnetic radiation. This paper aims to provide a concise overview of the pioneering efforts as well as the latest progress in these two overlapping research areas. In particular, the discussion is focused on the application of graphene and transition metal dichalcogenides in optically and electrically actuated terahertz amplitude and phase modulators. Furthermore, it provides an outlook on the technological prospects and challenges in these devices.
more »
« less
- Award ID(s):
- 1810096
- PAR ID:
- 10459369
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the past ten years, terahertz technology has developed rapidly in wireless communications, spectroscopy, and imaging. Various functional devices have been developed, such as filters, absorbers, polarizers, mixers, and modulators. Among these, the terahertz phase modulation is a current research hotspot. It is the core technology to realize flexible control of the terahertz wavefront, beam scanning, focusing deflection. It is indispensable in terahertz wireless communication, high-resolution imaging, and radar systems. This review summarizes the research progress of terahertz phase modulators from the two major types: free space and guided wave integration. Among these, the free space terahertz phase modulator is realized by combining the tunable materials and artificial metasurfaces. Based on different types of tunable materials, the terahertz free space phase modulator combining the semiconductor, liquid crystal, phase change materials, graphene, and other two-dimensional materials are introduced, and the influence of different materials on the phase modulation performance is discussed and analyzed. The monolithic integration and waveguide embedding methods are introduced separately, and the characteristics of different forms of terahertz-guided wave phase modulation are also discussed. Finally, the development trends of terahertz phase modulators, possible new methods, and future application requirements are discussed.more » « less
-
Abstract The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.more » « less
-
Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.more » « less
-
Abstract Graphene's emergence enables creating chiral metamaterials in helical shapes for terahertz (THz) applications, overcoming material limitations. However, practical implementation remains theoretical due to fabrication challenges. This paper introduces a dual‐component self‐assembly technique that enables creating vertically‐aligned continuous monolayer graphene helices at microscale with great flexibility and high controllability. This assembly process not only facilitates the creation of 3D microstructures, but also positions the 3D structures from a horizontal to a vertical orientation, achieving an aspect ratio (height/width) of ≈2700. As a result, an array of vertically‐aligned graphene helices is formed, reaching up to 4 mm in height, which is equivalent to 4 million times the height of monolayer graphene. The benefit of these 3D chiral structures made from graphene is their capability to infinitely extend in height, interacting with light in ways that are not possible with traditional 2D layering methods. Such an impressive height elevates a level of interaction with light that far surpasses what is achievable with traditional 2D layering methods, resulting in a notable enhancement of optical chirality properties. This approach is applicable to various 2D materials, promising advancements in innovative research and diverse applications across fields.more » « less