skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Updip Extent of Large Megathrust Ruptures Using P coda Levels
Abstract When slip at shallow depth occurs during large subduction zone thrust events,Pwave energy enters the water layer and establishespwP, the reverberating waves called “water bounces” that followpP. For water depths ≥5–6 km (i.e., near the trench) above the shallow slip,pwPmanifests in a strong ~10‐s period ringing that can persist for minutes into the teleseismicPwave coda at all azimuths. Deeper slip can generate shorter‐periodpwPringing at trenchward azimuths. At large distances,Pcodawindows have several‐minute‐long intervals free of secondary arrivals. We consider rmsPcoda/rmsPamplitude ratios at distances from 80° to 120° as a potential proxy for occurrence of shallow slip for 39MW7.5+ megathrust earthquakes from 1990 to 2016 with estimated slip distributions. Ratios for the 15‐ to 7‐s‐period band have a strong bimodal distribution, with higher averagePcoda/Pamplitudes observed for ruptures with slip extending to shallow depth.  more » « less
Award ID(s):
1802364
PAR ID:
10459386
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
10
ISSN:
0094-8276
Page Range / eLocation ID:
p. 5198-5206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most large tsunamis are generated by earthquakes on offshore plate boundary megathrusts. The primary factors influencing tsunami excitation are the seismic moment, faulting geometry, and depth of the faulting. Efforts to provide rapid tsunami warning have emphasized seismic and geodetic methods for quickly determining the event size and faulting geometry. It remains difficult to evaluate the updip extent of rupture, which has significant impact on tsunami excitation. TeleseismicPwaves can constrain this issue; slip under deep water generates strongpwPwater reverberations that persist as ringingPcodaafter the directPphases from the faulting have arrived. Event‐averagedPcoda/Pamplitude measures at large epicentral distances (>80°), tuned to the dominant periods of deep waterpwP(~12–15 s), correlate well with independent models of whether slip extends to near the trench or not. Data at closer ranges (30° to 80°) reduce the time lag needed for inferring the updip extent of rupture to <15 min. Arrival ofPPandPPPphases contaminates closer distancePcodameasures, but this can be suppressed by azimuthal or distance binning of the measures. Narrowband spectral ratio measures and differential magnitude measures ofPcodaand directP(mB) perform comparably to broader band root‐mean‐square (RMS) measures.Pcoda/Plevels for large nonmegathrust events are also documented. Rapid measurement ofPcoda/Pmetrics after a large earthquake can supplement quick moment tensor determinations to enhance tsunami warnings; observation of largePcodalevels indicates that shallow submarine rupture occurred and larger than typical tsunami (for givenMW) can be expected. 
    more » « less
  2. Abstract On 18 November 2022, a large earthquake struck offshore southern Sumatra, generating a tsunami with 25 cm peak amplitude recorded at tide gauge station SBLT. OurW‐phase solution indicates a shallow dip of 6.2°, compatible with long‐period surface wave radiation patterns. Inversion of teleseismic body waves indicates a shallow slip distribution extending from about 10 km deep to near the trench with maximum slip of ∼4.1 m and seismic moment of  Nm (MW7.3). Joint modeling of seismic and tsunami data indicates a shallow rigidity of ∼23 GPa. We find a low moment‐scaled radiated energy of , similar to that of the 2010MW7.8 Mentawai event () and other tsunami earthquakes. These characteristics indicate that the 2022 event should be designated as a smaller moment magnitude tsunami earthquake compared to the other 12 well‐documented global occurrences since 1896. The 2022 event ruptured up‐dip of the 2007MW8.4 Bengkulu earthquake, demonstrating shallow seismogenic capability of a megathrust that had experienced both a deeper seismic event and adjacent shallow aseismic afterslip. We consider seismogenic behavior of shallow megathrusts and concern for future tsunami earthquakes in subduction zones globally, noting a correlation between tsunami earthquake occurrence and subducting seafloor covered with siliceous pelagic sediments. We suggest that the combination of pelagic clay and siliceous sediments and rough seafloor topography near the trench play important roles in controlling the genesis of tsunami earthquakes along Sumatra and other regions, rather than the subduction tectonic framework of accretionary or erosive margin. 
    more » « less
  3. Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain. 
    more » « less
  4. Abstract A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture. 
    more » « less
  5. Abstract The 1938MS8.3 and 2021MW8.2 earthquakes both ruptured within the Semidi segment of the Aleutian‐Alaska subduction zone. The large‐slip distribution of the 2021 event is well constrained within the depth range 25–45 km, with seaward tsunami observations excluding significant shallower coseismic slip. The 1938 event slip distribution is more uncertain. Regional and far‐field tide gauge observations for the 1938 event are modeled to constrain the location of large coseismic slip. The largest slip (2.0 m) is located below the continental shelf on a 180‐km‐long portion of the rupture extending further northeast than the 2021 rupture, to near Sitkinak Island. Minor slip (1.0 m) extends seaward under the continental slope to 8 km deep, where large slip may have occurred in 1788. The megathrust shallower than 25 km depth to the southwest experienced many small aftershocks and aseismic slip following the 2021 event, and has limited slip deficit. 
    more » « less