Abstract Cloud seeding has been widely used for enhancing wintertime snowfall, particularly to augment water resources. This study examines microphysical responses to airborne glaciogenic seeding with silver iodide (AgI) during a specific case from the Seeded and Natural Orographic Wintertime Clouds: Idaho Experiment (SNOWIE) on 11 January 2017. Ground-based and airborne remote sensing and in situ measurements were employed to assess the impact of cloud seeding on cloud properties and precipitation formation. On 11th January, AgI propagated downwind along prevailing winds, and any potential ice and snow particles created from it were identified by ground-based radar as zigzag lines of enhanced reflectivity compared to background reflectivity. As the aircraft flew several times through these seeded clouds, microphysical properties within seeded clouds can be compared to those observed in unseeded clouds. The results indicate that seeded clouds exhibited significantly enhanced ice water content (IWC; reaching up to 0.20 g m−3) and precipitating-size (>400μm) ice particle concentrations (>7 L−1) relative to unseeded clouds. Additionally, seeded clouds exhibited a 30% decrease in the mean liquid water content (LWC) and cloud droplet concentrations, indicating efficient glaciation processes influenced by AgI. Precipitating snow development in seeded clouds occurred within 15–40 min following AgI release, marked by a transition from mixed-phase clouds with abundant supercooled liquid water (SLW) to ice clouds, with lidar-measured linear depolarization ratio (LDR) increasing to >0.3. These findings underscore the effectiveness of cloud seeding in enhancing snowfall by facilitating ice initiation and growth. Significance StatementThis study investigates the microphysical response of wintertime orographic clouds to airborne glaciogenic seeding, highlighting its role in enhancing precipitation. By introducing silver iodide (AgI) into clouds with supercooled liquid water, the seeding process facilitates ice particle formation, leading to increased snowfall. Through a detailed analysis of microphysical conditions using advanced in situ and remote sensing instruments, the study reveals enhanced ice water content and efficient conversion of liquid water to ice in seeded clouds. These findings provide critical insights into cloud-seeding efficacy, particularly in regions with abundant supercooled liquid water, offering a scientific foundation for enhancing snowpack in water-scarce mountainous areas. 
                        more » 
                        « less   
                    
                            
                            Drivers of Snowfall Accumulation in the Central Idaho Mountains Using Long-Term High-Resolution WRF Simulations
                        
                    
    
            Abstract The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region. Significance StatementThe purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2015829
- PAR ID:
- 10459425
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- Volume:
- 62
- Issue:
- 9
- ISSN:
- 1558-8424
- Format(s):
- Medium: X Size: p. 1279-1295
- Size(s):
- p. 1279-1295
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cloud seeding of wintertime orographic clouds in the western United States has been attempted to enhance snow production and snowpack. Due to the scarcity of long-term, high-resolution cloud and precipitation observations over complex terrain, few studies have explored variations in orographic snowfall amounts by comparing environmental conditions and cloud characteristics with surface snowfall distribution and quantity. This study analyzes the environmental conditions and cloud characteristics in relation to surface snowfall patterns for the 24 snowfall events observed during the 2017 Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The investigation aims to understand: 1) What is the influence, if any, of wind, turbulence, and updraft strength on snowfall amounts, rates, and distribution? 2) What is the relationship, if any, of cloud properties and precipitation-forming effectiveness? and 3) Can cloud seeding modify controlling cloud characteristics sufficiently to increase precipitation in otherwise inefficient orographic clouds? The analysis over a 7200-km2observational domain revealed that the accumulated liquid-equivalent snowfall was <0.9 × 107m3and snowfall rates were <0.45 mm h−1for about half of the events. Low snowfall events were characterized by cloud-top temperatures >−20°C, fewer larger droplets, higher liquid water content, and lower ice water content compared to the other events. Cases with minimal background natural snowfall also permitted radar observation of seeding lines. In these cases, cloud seeding was mainly responsible for snowfall. The amount of silver iodide (AgI) released during cloud seeding did not correlate well with snowfall amount and rate. Significance StatementThis study illustrates the complexities of estimating snowfall in wintertime orographic clouds, underscoring the frequent inefficiency of these clouds in generating snowfall—a pivotal concern for regions dependent on snowpack for water resources. By analyzing environmental and cloud characteristics against snowfall patterns during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE), the research provides critical insights into the complexities of precipitation formation. The findings, particularly on the impact of cloud seeding in enhancing snowfall under specific conditions, contribute significantly to our understanding of weather modification techniques. This research not only is vital for advancing scientific knowledge in understanding wintertime mountain cloud systems but also holds profound implications for water resource management, agriculture, and disaster preparedness in snow-dependent regions.more » « less
- 
            Abstract Snowpack melting is a crucial water resource for local ecosystems, agriculture, and hydropower in the Intermountain West of the United States. Glaciogenic seeding, a method widely used in mountain regions to enhance precipitation, has been subject to numerous field studies aiming to understand and validate this mechanism. However, investigating precipitation distribution and amounts in mountainous areas is complicated due to the intricate interplay of synoptic circulation patterns and local complex topography. These interactions significantly influence microphysical processes, ultimately affecting the amount and distribution of surface precipitation. To address these challenges, this study leverages Weather Research and Forecasting (WRF) Model simulations, providing high-resolution (900 m), hourly data, spanning the Payette region of Idaho from January to March 2017. We applied the self-organizing map approach to categorize the most representative synoptic circulation patterns and conducted a multiscale analysis to explore their associated environmental conditions and microphysical processes, aiming to assess the cloud seeding potential. The analysis identified four primary synoptic patterns: cold zonal flow (CZF), cold southwesterly flow (CSWF), warm zonal flow (WZF), and warm southwesterly flow (WSWF), constituting 21.3%, 23.1%, 30.0%, and 25.5%, respectively. CSWF and WSWF demonstrated efficiency in generating natural precipitation. These patterns were characterized by abundant supercooled liquid water (SLW) and ice particles, facilitating cloud droplet growth through seeder–feeder processes. On the other hand, CZF exhibited the least SLW and limited potential for cloud seeding, while WZF displayed a lower ice water content but substantial SLW in the diffusion/dendritic growth layer, suggesting a favorable scenario for cloud seeding. Significance StatementUnderstanding snowfall amounts and distribution in the mountains and how it is linked to topography, synoptic flow, and microphysical processes will help in the development of effective strategies for cloud seeding operations, managing runoff, reservoir, and mitigating flood risks, garnering substantial interest from stakeholders and the government agencies.more » « less
- 
            Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5-dB change in equivalent reflectivity factorZeis required to stand out against background naturalZevariability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 to 1.214 g m−3, and additional IWC introduced by seeding ranging from 0.012 to 0.486 g m−3. The upper-limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Significance StatementOperational glaciogenic seeding programs targeting wintertime orographic clouds are funded by a range of stakeholders to increase snowpack. Glaciogenic seeding signatures have been observed by radar when natural background snowfall is weak but never when heavy background precipitation was present. This analysis quantitatively shows that seeding effects will be undetectable using radar reflectivity under conditions of background snowfall unless the background snowfall is weak, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Alternative assessment methods such as trace element analysis in snow, aircraft measurements, precipitation measurements, and modeling should be used to determine the efficacy of orographic cloud seeding when heavy background precipitation is present.more » « less
- 
            null (Ed.)Abstract The spatial distribution and magnitude of snowfall resulting from cloud seeding with silver iodide (AgI) is closely linked to atmospheric conditions, seeding operations, and dynamical, thermodynamical, and microphysical processes. Here, microphysical processes leading to ice and snow production are analyzed in orographic clouds for three cloud-seeding events, each with light or no natural precipitation and well-defined, traceable seeding lines. Airborne and ground-based radar observations are linked to in situ cloud and precipitation measurements to determine the spatiotemporal evolution of ice initiation, particle growth, and snow fallout in seeded clouds. These processes and surface snow amounts are explored as particle plumes evolve from varying amounts of AgI released, and within changing environmental conditions, including changes in liquid water content (LWC) along and downwind of the seeding track, wind speed, and shear. More AgI did not necessarily produce more liquid equivalent snowfall (LESnow). The greatest amount of LESnow, largest area covered by snowfall, and highest peak snowfall produced through seeding occurred on the day with the largest and most widespread occurrence of supercooled drizzle, highest wind shear, and greater LWC along and downwind of the seeding track. The day with the least supercooled drizzle and the lowest LWC downwind of the seeding track produced the smallest amount of LESnow through seeding. The stronger the wind was, the farther away the snowfall occurred from the seeding track.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
