Abstract Snowpack melting is a crucial water resource for local ecosystems, agriculture, and hydropower in the Intermountain West of the United States. Glaciogenic seeding, a method widely used in mountain regions to enhance precipitation, has been subject to numerous field studies aiming to understand and validate this mechanism. However, investigating precipitation distribution and amounts in mountainous areas is complicated due to the intricate interplay of synoptic circulation patterns and local complex topography. These interactions significantly influence microphysical processes, ultimately affecting the amount and distribution of surface precipitation. To address these challenges, this study leverages Weather Research and Forecasting (WRF) Model simulations, providing high-resolution (900 m), hourly data, spanning the Payette region of Idaho from January to March 2017. We applied the self-organizing map approach to categorize the most representative synoptic circulation patterns and conducted a multiscale analysis to explore their associated environmental conditions and microphysical processes, aiming to assess the cloud seeding potential. The analysis identified four primary synoptic patterns: cold zonal flow (CZF), cold southwesterly flow (CSWF), warm zonal flow (WZF), and warm southwesterly flow (WSWF), constituting 21.3%, 23.1%, 30.0%, and 25.5%, respectively. CSWF and WSWF demonstrated efficiency in generating natural precipitation. These patterns were characterized by abundant supercooled liquid water (SLW) and ice particles, facilitating cloud droplet growth through seeder–feeder processes. On the other hand, CZF exhibited the least SLW and limited potential for cloud seeding, while WZF displayed a lower ice water content but substantial SLW in the diffusion/dendritic growth layer, suggesting a favorable scenario for cloud seeding. Significance StatementUnderstanding snowfall amounts and distribution in the mountains and how it is linked to topography, synoptic flow, and microphysical processes will help in the development of effective strategies for cloud seeding operations, managing runoff, reservoir, and mitigating flood risks, garnering substantial interest from stakeholders and the government agencies.
more »
« less
Drivers of Snowfall Accumulation in the Central Idaho Mountains Using Long-Term High-Resolution WRF Simulations
Abstract The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region. Significance StatementThe purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding.
more »
« less
- Award ID(s):
- 2015829
- PAR ID:
- 10459425
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- Volume:
- 62
- Issue:
- 9
- ISSN:
- 1558-8424
- Format(s):
- Medium: X Size: p. 1279-1295
- Size(s):
- p. 1279-1295
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5-dB change in equivalent reflectivity factorZeis required to stand out against background naturalZevariability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 to 1.214 g m−3, and additional IWC introduced by seeding ranging from 0.012 to 0.486 g m−3. The upper-limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Significance StatementOperational glaciogenic seeding programs targeting wintertime orographic clouds are funded by a range of stakeholders to increase snowpack. Glaciogenic seeding signatures have been observed by radar when natural background snowfall is weak but never when heavy background precipitation was present. This analysis quantitatively shows that seeding effects will be undetectable using radar reflectivity under conditions of background snowfall unless the background snowfall is weak, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Alternative assessment methods such as trace element analysis in snow, aircraft measurements, precipitation measurements, and modeling should be used to determine the efficacy of orographic cloud seeding when heavy background precipitation is present.more » « less
-
null (Ed.)Abstract The spatial distribution and magnitude of snowfall resulting from cloud seeding with silver iodide (AgI) is closely linked to atmospheric conditions, seeding operations, and dynamical, thermodynamical, and microphysical processes. Here, microphysical processes leading to ice and snow production are analyzed in orographic clouds for three cloud-seeding events, each with light or no natural precipitation and well-defined, traceable seeding lines. Airborne and ground-based radar observations are linked to in situ cloud and precipitation measurements to determine the spatiotemporal evolution of ice initiation, particle growth, and snow fallout in seeded clouds. These processes and surface snow amounts are explored as particle plumes evolve from varying amounts of AgI released, and within changing environmental conditions, including changes in liquid water content (LWC) along and downwind of the seeding track, wind speed, and shear. More AgI did not necessarily produce more liquid equivalent snowfall (LESnow). The greatest amount of LESnow, largest area covered by snowfall, and highest peak snowfall produced through seeding occurred on the day with the largest and most widespread occurrence of supercooled drizzle, highest wind shear, and greater LWC along and downwind of the seeding track. The day with the least supercooled drizzle and the lowest LWC downwind of the seeding track produced the smallest amount of LESnow through seeding. The stronger the wind was, the farther away the snowfall occurred from the seeding track.more » « less
-
Climate change and population growth have increased demand for water in arid regions. For over half a century, cloud seeding has been evaluated as a technology to increase water supply; statistical approaches have compared seeded to nonseeded events through precipitation gauge analyses. Here, a physically based approach to quantify snowfall from cloud seeding in mountain cloud systems is presented. Areas of precipitation unambiguously attributed to cloud seeding are isolated from natural precipitation (<1 mm h−1). Spatial and temporal evolution of precipitation generated by cloud seeding is then quantified using radar observations and snow gauge measurements. This study uses the approach of combining radar technology and precipitation gauge measurements to quantify the spatial and temporal evolution of snowfall generated from glaciogenic cloud seeding of winter mountain cloud systems and its spatial and temporal evolution. The results represent a critical step toward quantifying cloud seeding impact. For the cases presented, precipitation gauges measured increases between 0.05 and 0.3 mm as precipitation generated by cloud seeding passed over the instruments. The total amount of water generated by cloud seeding ranged from 1.2 × 105m3(100 ac ft) for 20 min of cloud seeding, 2.4 × 105m3(196 ac ft) for 86 min of seeding to 3.4 x 105m3(275 ac ft) for 24 min of cloud seeding.more » « less
-
Abstract A dry-air intrusion induced by the tropopause folding split the deep cloud into two layers resulting in a shallow orographic cloud with a supercooled liquid cloud top at around −15°C and an ice cloud above it on 19 January 2017 during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The airborne AgI seeding of this case was simulated by the WRF Weather Modification (WRF-WxMod) Model with different configurations. Simulations at different grid spacing, driven by different reanalysis data, using different model physics were conducted to explore the ability of WRF-WxMod to capture the properties of natural and seeded clouds. The detailed model–observation comparisons show that the simulation driven by ERA5 data, using Thompson–Eidhammer microphysics with 30% of the CCN climatology, best captured the observed cloud structure and supercooled liquid water properties. The ability of the model to correctly capture the wind field was critical for successful simulation of the seeding plume locations. The seeding plume features and ice number concentrations within them from the large-eddy simulations (LES) are in better agreement with observations than non-LES runs mostly due to weaker AgI dispersion associated with the finer grid spacing. Seeding effects on precipitation amount and impacted areas from LES seeding simulations agreed well with radar-derived values. This study shows that WRF-WxMod is able to simulate and quantify observed features of natural and seeded clouds given that critical observations are available to validate the model. Observation-constrained seeding ensemble simulations are proposed to quantify the AgI seeding impacts on wintertime orographic clouds. Significance Statement Recent observational work has demonstrated that the impact of airborne glaciogenic seeding of orographic supercooled liquid clouds is detectable and can be quantified in terms of the extra ground precipitation. This study aims, for the first time, to simulate this seeding impact for one well-observed case. The stakes are high: if the model performs well in this case, then seasonal simulations can be conducted with appropriate configurations after validations against observations, to determine the impact of a seeding program on the seasonal mountain snowpack and runoff, with more fidelity than ever. High–resolution weather simulations inherently carry uncertainty. Within the envelope of this uncertainty, the model compares very well to the field observations.more » « less