Abstract In this paper, we establish the fully decoupled numerical methods by utilizing scalar auxiliary variable approach for solving Cahn–Hilliard–Darcy system. We exploit the operator splitting technique to decouple the coupled system and Galerkin finite element method in space to construct the fully discrete formulation. The developed numerical methods have the features of second order accuracy, totally decoupling, linearization, and unconditional energy stability. The unconditionally stability of the two proposed decoupled numerical schemes are rigorously proved. Abundant numerical results are reported to verify the accuracy and effectiveness of proposed numerical methods.
more »
« less
Coupled and decoupled stabilized mixed finite element methods for nonstationary dual‐porosity‐Stokes fluid flow model
Summary In this paper, we propose and analyze two stabilized mixed finite element methods for the dual‐porosity‐Stokes model, which couples the free flow region and microfracture‐matrix system through four interface conditions on an interface. The first stabilized mixed finite element method is a coupled method in the traditional format. Based on the idea of partitioned time stepping, the four interface conditions, and the mass exchange terms in the dual‐porosity model, the second stabilized mixed finite element method is decoupled in two levels and allows a noniterative splitting of the coupled problem into three subproblems. Due to their superior conservation properties and convenience of the computation of flux, mixed finite element methods have been widely developed for different types of subsurface flow problems in porous media. For the mixed finite element methods developed in this article, no Lagrange multiplier is used, but an interface stabilization term with a penalty parameter is added in the temporal discretization. This stabilization term ensures the numerical stability of both the coupled and decoupled schemes. The stability and the convergence analysis are carried out for both the coupled and decoupled schemes. Three numerical experiments are provided to demonstrate the accuracy, efficiency, and applicability of the proposed methods.
more »
« less
- Award ID(s):
- 1722647
- PAR ID:
- 10459573
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 120
- Issue:
- 6
- ISSN:
- 0029-5981
- Page Range / eLocation ID:
- p. 803-833
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this article, we consider a phase field model with different densities and viscosities for the coupled two-phase porous media flow and two-phase free flow, as well as the corresponding numerical simulation. This model consists of three parts: a Cahn–Hilliard–Darcy system with different densities/viscosities describing the porous media flow in matrix, a Cahn–Hilliard–Navier–Stokes system with different densities/viscosities describing the free fluid in conduit, and seven interface conditions coupling the flows in the matrix and the conduit. Based on the separate Cahn–Hilliard equations in the porous media region and the free flow region, a weak formulation is proposed to incorporate the two-phase systems of the two regions and the seven interface conditions between them, and the corresponding energy law is proved for the model. A fully decoupled numerical scheme, including the novel decoupling of the Cahn–Hilliard equations through the four phase interface conditions, is developed to solve this coupled nonlinear phase field model. An energy-law preservation is analyzed for the temporal semi-discretization scheme. Furthermore, a fully discretized Galerkin finite element method is proposed. Six numerical examples are provided to demonstrate the accuracy, discrete energy law, and applicability of the proposed fully decoupled scheme.more » « less
-
In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions.more » « less
-
Abstract This paper proposes and investigates the two-grid stabilized lowest equal-order finite element method for the time-independent dual-permeability-Stokes model with the Beavers-Joseph-Saffman-Jones interface conditions. This method is mainly based on the idea of combining the two-grid and the two local Gauss integrals for the dual-permeability-Stokes system. In this technique, we use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the dual-permeability-Stokes model using the lowest equal-order finite element quadruples. In the two-grid scheme, the global problem is solved using the standard$$ P_1-P_1-P_1-P_1 $$ finite element approximations only on a coarse grid with grid sizeH. Then, a coarse grid solution is applied on a fine grid of sizehto decouple the interface terms and the mass exchange terms for solving the three independent subproblems such as the Stokes equations, microfracture equations, and the matrix equations on the fine grid. On the other hand, microfracture and matrix equations are decoupled through the mass exchange terms. The weak formulation is reported, and the optimal error estimate is derived for the two-grid schemes. Furthermore, the numerical results validate that the two-grid stabilized lowest equal-order finite element method is effective and has the same accuracy as the coupling scheme when we choose$$ h=H^2 $$ .more » « less
-
In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers.more » « less
An official website of the United States government
