skip to main content


Title: Metal Coordination‐Mediated Functional Grading and Self‐Healing in Mussel Byssus Cuticle
Abstract

Metal‐containing polymer networks are ubiquitous in biological systems, and their unique structures enable a variety of fascinating biological behaviors. Cuticle of mussel byssal threads, containing Fe‐catecholate complexes, shows remarkably high hardness, high extensibility, and self‐healing capability. Understanding strengthening and self‐healing mechanisms is essential for elucidating animal behaviors and rationally designing mussel‐inspired materials. Here, direct evidence of Fe3+and Fe2+gradient distribution across the cuticle thickness is demonstrated, which shows more Fe2+inside the inner cuticle, to support the hypothesis that the cuticle is a functionally graded material with high stiffness, extensibility, and self‐healing capacity. The mechanical tests of the mussel threads show that both strength and extensibility of the threads decrease with increasing oxygen contents, but this property degradation can be restored upon removing the oxygen. The first‐principles calculations explain the change in iron coordination, which plays a key role in strengthening, degradation, and self‐healing of the polymer networks. The oxygen absorbs on metal ions, weakening the iron‐catecholate bonds in the cuticle and collagen core, but this process can be reversed by sea water. These findings can have important implications in the design of next‐generation bioinspired robust, highly extensible materials, and catalysis.

 
more » « less
Award ID(s):
1662288
NSF-PAR ID:
10459587
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
6
Issue:
23
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogels containing thermosensitive polymers such as poly(N‐isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+) that coordinate with functional groups along the P(AAc) chains, here a thermoresponsive hydrogel with enhanced mechanical extensibility, strength, and toughness is introduced. Using both experimentation and constitutive modeling, it is found that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self‐healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) decreases slightly with increased Fe3+concentration, the temperature transition range is widened and shifted upward toward that of human body temperature (between 30 and 40 °C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications.

     
    more » « less
  2. Abstract

    New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.

     
    more » « less
  3. Abstract

    Popular bioadhesives, such as fibrin, cyanoacrylate, and albumin–glutaraldehyde based materials, have been applied for clinical applications in wound healing, drug delivery, and bone and soft tissue engineering; however, their performances are limited by weak adhesion strength and rapid degradation. In this study a mussel‐inspired, nanocomposite‐based, biodegradable tissue adhesive is developed by blending poly(lactic‐co‐glycolic acid) (PLGA) or N‐hydroxysuccinimide modified PLGA nanoparticles (PLGA‐NHS) with mussel‐inspired alginate–dopamine polymer (Alg‐Dopa). Adhesive strength measurement of the nanocomposites on porcine skin–muscle constructs reveals that the incorporation of nanoparticles in Alg‐Dopa significantly enhances the tissue adhesive strength compared to the mussel‐inspired adhesive alone. The nanocomposite formed by PLGA‐NHS nanoparticles shows higher lap shear strength of 33 ± 3 kPa, compared to that of Alg‐Dopa hydrogel alone (14 ± 2 kPa). In addition, these nanocomposites are degradable and cytocompatible in vitro, and elicit in vivo minimal inflammatory responses in a rat model, suggesting clinical potential of these nanocomposites as bioadhesives.

     
    more » « less
  4. Abstract

    Cu‐containing metalloenzymes are known to catalyze oxygen activation through cooperative catalysis. In the current work, we report the design of synthetic polymer Cu catalysts using pyrene‐labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py‐PGMADPA) to coordinate multiple Cu sites along polymer chains. The catalysts feature a pyrene end group that can form supramolecular π‐π stacking with conductive carbon to allow efficient immobilization of catalysts to the graphite electrode. Cu‐containing Py‐PGMADPA was examined for electrocatalytic oxygen reduction. The hybrid catalyst showed an onset potential of 0.5 V (vs. RHE) at pH 7 and 0.79 V at pH 13. The kinetic study indicated that the catalyst had a 2ereduction of oxygen mainly mediated by Cu+centers. We demonstrated the importance of cooperative catalysis among Cu sites which did not exist for other transition metal ions, like Mn2+, Fe2+, Co2+, and Ni2+. The confinement of polymer chains promotes the activity and stabilizes Cu catalysts even at an extremely low Cu loading. The rational design of bioinspired polymer catalysts offers an alternative way to prepare synthetic mimics of metalloenzymes.

     
    more » « less
  5. Abstract

    High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+and H2O2generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.

     
    more » « less