skip to main content


Title: Contrasting effects of high‐intensity photosynthetically active radiation on two bloom‐forming dinoflagellates

While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensityPARon the bloom‐forming dinoflagellatesAlexandrium fundyenseandHeterocapsa rotundata. Various physiological parameters (photosynthetic efficiencyFv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐acontent) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to highPAR. While high light decreasedFv/Fmin both species,A. fundyenseshowed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellularDMSPindicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐ainversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells.Heterocapsa rotundatacells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasingDMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐acontent. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.

 
more » « less
NSF-PAR ID:
10459614
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
55
Issue:
5
ISSN:
0022-3646
Page Range / eLocation ID:
p. 1082-1095
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dimethylsulfoniopropionate (DMSP) is produced by many species of marine phytoplankton and has been reported to provide a variety of beneficial functions including osmoregulation. Dinoflagellates are recognized as majorDMSPproducers; however, accumulation has been shown to be highly variable in this group. We explored the effect of hyposaline transfer inGambierdiscus belizeanusbetween ecologically relevant salinities (36 and 31) onDMSPaccumulation, Chla, cell growth, and cell volume, over 12 d. Our results showed thatG. belizeanusmaintained an intracellularDMSPcontent of 16.3 pmol cell−1and concentration of 139 mMin both salinities. Although this intracellular concentration was near the median reported for other dinoflagellates, the cellular content achieved byG. belizeanuswas the highest reported of any dinoflagellate thus far, owing mainly to its large size.DMSPlevels were not significantly affected by salinity treatment but did change over time during the experiment. Salinity, however, did have a significant effect on the ratio ofDMSP:Chla, suggesting that salinity transfer ofG. belizeanusinduced a physiological response other thanDMSPadjustment. A survey ofDMSPcontent in a variety ofGambierdiscusspecies and strains revealed relatively highDMSPconcentrations (1.0–16.4 pmol cell−1) as well as high intrageneric and intraspecific variation. We conclude that, althoughDMSPmay not be involved in long‐term (3–12 d) osmoregulation in this species,G. belizeanusand otherGambierdiscusspecies may be important contributors toDMSPproduction in tropical benthic microalgal communities due to their large size and high cellular content.

     
    more » « less
  2. The underwater light field of lakes, estuaries, and oceans may vary greatly in spectral composition. Phytoplankton in these environments must contain pigments that absorb the available colors of light. If spectral quality changes, acclimation to the new spectral environment would confer an ecological advantage in terms of photosynthesis and growth. Here, we explored the capacity of eight marine cryptophytes to adjust pigmentation in response to changes in spectral irradiance and related effects on light absorption, photosynthetically useable radiation (PUR), and growth rate. The pigment composition of all species changed in some way in response to shifts in spectral irradiance, but not all pigment changes could be considered advantageous in the context of chromatic acclimation. For most species, absorption by chl‐aand chl‐c2resulted in highest absorption in the blue region, highestPURvalues for blue‐light grown cells, and highest growth rates in blue light. The exception wasChroomonas mesostigmatica(CCMP1168), which contains a high percentage of Cryptophyte‐Phycocyanin (Cr‐PC) 645, absorbs strongly in the orange‐to‐red region of the spectrum, and grew fastest under red light. The position and magnitude of the maximum and secondary absorption peak of Cr‐PC569, the phycobiliprotein pigment ofHemiselmis cryptochromatica, varied with spectral irradiance. The underlying cause remains unknown, but may represent a mechanism by which cryptophytes optimize photon capture.

     
    more » « less
  3. Abstract

    With the high variability of natural growth environments, plants exhibit flexibility and resilience in regard to the strategies they employ to maintain overall fitness, including maximizing light use for photosynthesis, while simultaneously limiting light‐associated damage. We measured distinct parameters of photosynthetic performance ofArabidopsis thalianaplants under dynamic light regimes. Plants were grown to maturity then subjected to the following 5‐day (16 h light, 8 h dark) regime: Day 1 at constant light (CL) intensity during light period, representative of a common lab growth condition; Day 2 under sinusoidal variation in light intensity (SL) during the light period that is representative of changes occurring during a clear sunny day; Day 3 under fluctuating light (FL) intensity during the light period that simulates sudden changes that might occur with the movements of clouds in and out of the view of the sun; Day 4, repeat of CL; and Day 5, repeat of FL. We also examined the global transcriptome profile in these growth conditions based on obtaining RNA‐sequencing (RNA‐seq) data for whole plant rosettes. Our transcriptomic analyses indicated downregulation of photosystem I (PSI) and II (PSII) associated genes, which were correlated with elevated levels of photoinhibition as indicated by measurements of nonphotochemical quenching (NPQ), energy‐dependent quenching (qE), and inhibitory quenching (qI) under both SL and FL conditions. Furthermore, our transcriptomic results indicated downregulation of tetrapyrrole biosynthesis associated genes, coupled with reduced levels of chlorophyll under both SL and FL compared with CL, as well as downregulation of photorespiration‐associated genes under SL. We also noticed an enrichment of the stress response gene ontology (GO) terms for genes differentially regulated under FL when compared with SL. Collectively, our phenotypic and transcriptome analyses serve as useful resources for probing the underlying molecular mechanisms associated with plant acclimation to rapid light intensity changes in the natural environment.

     
    more » « less
  4. Abstract

    Synonymous codons are not used at equal frequency throughout the genome, a phenomenon termed codon usage bias (CUB). It is often assumed that interspecific variation in the intensity ofCUBis related to species differences in effective population sizes (Ne), with selection onCUBoperating less efficiently in species with smallNe. Here, we specifically ask whether variation inNepredicts differences inCUBin mammals and report two main findings. First, across 41 mammalian genomes,CUBwas not correlated with two indirect proxies ofNe(body mass and generation time), even though there was statistically significant evidence of selection shapingCUBacross all species. Interestingly, autosomal genes showed higher codon usage bias compared to X‐linked genes, and high‐recombination genes showed higher codon usage bias compared to low recombination genes, suggesting intraspecific variation inNepredicts variation inCUB. Second, across six mammalian species with genetic estimates ofNe(human, chimpanzee, rabbit, and three mouse species:Mus musculus, M. domesticus,andM. castaneus),NeandCUBwere weakly and inconsistently correlated. At least in mammals, interspecific divergence inNedoes not strongly predict variation inCUB. One hypothesis is that each species responds to a unique distribution of selection coefficients, confounding any straightforward link betweenNeandCUB.

     
    more » « less
  5. Abstract

    Sigma factor (SIG) proteins contribute to promoter specificity of the plastid‐encodedRNApolymerase during chloroplast genome transcription. All six members of theSIGfamily, that is,SIG1–SIG6, are nuclear‐encoded proteins targeted to chloroplasts. Sigma factor 2 (SIG2) is a phytochrome‐regulated protein important for stoichiometric control of the expression of plastid‐ and nuclear‐encoded genes that impact plastid development and plant growth and development. AmongSIGfactors,SIG2 is required not only for transcription of chloroplast genes (i.e., anterograde signaling), but also impacts nuclear‐encoded, photosynthesis‐related, and light signaling‐related genes (i.e., retrograde signaling) in response to plastid functional status. AlthoughSIG2 is involved in photomorphogenesis in Arabidopsis, the molecular bases for its role in light signaling that impacts photomorphogenesis and aspects of photosynthesis have only recently begun to be investigated. Previously, we reported thatSIG2 is necessary for phytochrome‐mediated photomorphogenesis specifically under red (R) and far‐red light, thereby suggesting a link between phytochromes and nuclear‐encodedSIG2 in light signaling. To explore transcriptional roles ofSIG2 in R‐dependent growth and development, we performedRNAsequencing analysis to compare gene expression insig2‐2mutant and Col‐0 wild‐type seedlings at two developmental stages (1‐ and 7‐day). We identified a subset of misregulated genes involved in growth, hormonal cross talk, stress responses, and photosynthesis. To investigate the functional relevance of these gene expression analyses, we performed several comparative phenotyping tests. In these analyses, strongsig2mutants showed insensitivity to bioactiveGA3, high intracellular levels of hydrogen peroxide (H2O2) indicative of a stress response, and specific defects in photosynthesis, including elevated levels of cyclic electron flow (CEF) and nonphotochemical quenching (NPQ). We demonstrated thatSIG2 regulates a broader range of physiological responses at the molecular level than previously reported, with specific roles in red‐light‐mediated photomorphogenesis.

     
    more » « less