Abstract Traits that have arisen multiple times yet still remain rare present a curious paradox. A number of these rare traits show a distinct tippy pattern, where they appear widely dispersed across a phylogeny, are associated with short branches and differ between recently diverged sister species. This phylogenetic pattern has classically been attributed to the trait being an evolutionary dead end, where the trait arises due to some short‐term evolutionary advantage, but it ultimately leads species to extinction. While the higher extinction rate associated with a dead end trait could produce such a tippy pattern, a similar pattern could appear if lineages with the trait speciated slower than other lineages, or if the trait was lost more often that it was gained. In this study, we quantify the degree of tippiness of red flowers in the tomato family, Solanaceae, and investigate the macroevolutionary processes that could explain the sparse phylogenetic distribution of this trait. Using a suite of metrics, we confirm that red‐flowered lineages are significantly overdispersed across the tree and form smaller clades than expected under a null model. Next, we fit 22 alternative models using HiSSE(Hidden State Speciation and Extinction), which accommodates asymmetries in speciation, extinction and transition rates that depend on observed and unobserved (hidden) character states. Results of the model fitting indicated significant variation in diversification rates across the family, which is best explained by the inclusion of hidden states. Our best fitting model differs between the maximum clade credibility tree and when incorporating phylogenetic uncertainty, suggesting that the extreme tippiness and rarity of red Solanaceae flowers makes it difficult to distinguish among different underlying processes. However, both of the best models strongly support a bias towards the loss of red flowers. The best fitting HiSSEmodel when incorporating phylogenetic uncertainty lends some support to the hypothesis that lineages with red flowers exhibit reduced diversification rates due to elevated extinction rates. Future studies employing simulations or targeting population‐level processes may allow us to determine whether red flowers in Solanaceae or other angiosperms clades are rare and tippy due to a combination of processes, or asymmetrical transitions alone. 
                        more » 
                        « less   
                    
                            
                            Interaction among ploidy, breeding system and lineage diversification
                        
                    
    
            Summary If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self‐incompatible vs self‐compatible states) are both thought to be drivers of differential diversification in angiosperms.We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits.We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self‐incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization.Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10459715
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 224
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1252-1265
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The effect of traits on diversification rates is a major topic of study in the fields of evolutionary biology and palaeontology. Many researchers investigating these macroevolutionary questions currently make use of the extensive suite of state-dependent speciation and extinction (SSE) models. These models were developed for, and are almost exclusively used with, phylogenetic trees of extant species. However, analyses considering only extant taxa are limited in their power to estimate extinction rates. Furthermore, SSE models can erroneously detect associations between neutral traits and diversification rates when the true associated trait is not observed. In this study, we examined the impact of including fossil data on the accuracy of parameter estimates under the binary-state speciation and extinction (BiSSE) model. This was achieved by combining SSE models with the fossilized birth–death process. We show that the inclusion of fossils improves the accuracy of extinction-rate estimates for analyses applying the BiSSE model in a Bayesian inference framework, with no negative impact on speciation-rate and state transition-rate estimates when compared with estimates from trees of only extant taxa. However, even with the addition of fossil data, analyses under the BiSSE model continued to incorrectly identify correlations between diversification rates and neutral traits. This article is part of the theme issue ‘“A mathematical theory of evolution”: phylogenetic models dating back 100 years’.more » « less
- 
            Summary Mature leaf area (LA) is a showcase of diversity – varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA.We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal ‘developmental traits’: initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments.Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade‐offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade‐offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild‐type comparisons showed these trade‐offs have a genetic basis in Arabidopsis.Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts.more » « less
- 
            Abstract BackgroundSince the mid-20th century, it has been argued by some that the transition from diploidy to polyploidy is an ‘evolutionary dead end’ in plants. Although this point has been debated ever since, multiple definitions of ‘dead end’ have been used in the polyploidy literature, without sufficient differentiation between alternative uses. ScopeHere, we focus on the two most common conceptions of the dead-end hypothesis currently discussed: the ‘lowering diversification’ hypothesis and the ‘rarely successful’ hypothesis. We discuss the evidence for both hypotheses, and we use a recently developed method of inferring tip diversification rates to demonstrate tests for the effect of ploidy on diversification in Solanaceae. ConclusionsWe find that diversification rates in the family are not strongly correlated with ploidy or with the closely related trait of breeding system. We also outline recent work in the field that moves beyond the relatively simple question of whether polyploidy increases, decreases or does not significantly affect diversification rates in plants.more » « less
- 
            Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
