skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High specificity of widely used phospho‐tau antibodies validated using a quantitative whole‐cell based assay
Abstract Antibodies raised against defined phosphorylation sites of the microtubule‐associated protein tau are widely used in scientific research and being applied in clinical assays. However, recent studies have revealed an alarming degree of non‐specific binding found in these antibodies. In order to quantify and compare the specificity phospho‐tau antibodies and other post‐translational modification site‐specific antibodies in general, a measure of specificity is urgently needed. Here, we report a robust flow cytometry assay using human embryonic kidney cells that enables the determination of a specificity parameter termed Φ, which measures the fraction of non‐specific signal in antibody binding. We validate our assay using anti‐tau antibodies with known specificity profiles, and apply it to measure the specificity of seven widely used phospho‐tau antibodies (AT270, AT8, AT100, AT180, PHF‐6, TG‐3, and PHF‐1) among others. We successfully determined the Φ values for all antibodies except AT100, which did not show detectable binding in our assay. Our results show that antibodies AT8, AT180, PHF‐6, TG‐3, and PHF‐1 have Φ values near 1, which indicates no detectable non‐specific binding. AT270 showed Φ value around 0.8, meaning that approximately 20% of the binding signal originates from non‐specific binding. Further analyses using immunocytochemistry and western blotting confirmed the presence of non‐specific binding of AT270 to non‐tau proteins found in human embryonic kidney cells and the mouse hippocampus. We anticipate that the quantitative approach and parameter introduced here will be widely adopted as a standard for reporting the specificity for phospho‐tau antibodies, and potentially for post‐translational modification targeting antibodies in general. imageCover Image for this issue: doi:10.1111/jnc.14727.  more » « less
Award ID(s):
1706743
PAR ID:
10459727
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Neurochemistry
Volume:
152
Issue:
1
ISSN:
0022-3042
Page Range / eLocation ID:
p. 122-135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this article, we investigate the band structure‐related mechanisms that influence impact ionization. Band‐structures calculated using an empirical tight‐binding method and Monte Carlo simulations reveal that the mini‐gaps in the conduction band do not inhibit electron impact ionization. Good agreement between the full band Monte Carlo simulations and measured noise characteristics is demonstrated. image 
    more » « less
  2. Abstract Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+and are capable of regulating the release of glutamate and γ‐aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory‐inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed‐pregnant Sprague‐Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath‐applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration‐dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that β4‐containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine‐mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N‐methyl‐D‐aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+/calmodulin‐dependent kinase II (CaMKII) and serine 831 phosphorylation of the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network‐wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. Open science badgesThis article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found athttps://cos.io/our-services/open-science-badges/ image 
    more » « less
  3. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less
  4. Abstract Pseudocyclic β‐trifluorosulfonyloxy vinylbenziodoxolones were prepared starting from hydroxybenziodoxolones and alkynes in the presence of trifluoromethanesulfonic acid. The reaction of these compounds with azide anion leads to β‐azido vinylbenziodoxolones as products of vinylic nucleophilic substitution in which addition‐elimination reactions occur and the double bond configuration is retained. The structures of β‐trifluorosulfonyloxy vinylbenziodoxolone and β‐azido vinylbenziodoxolone were established by single crystal X‐ray diffraction. magnified image 
    more » « less
  5. Abstract The direct C−H acyloxylation of polycyclic aromatic hydrocarbons (PAHs) with carboxylic acids as the acyloxylating agents was achieved via the electron‐donor‐acceptor (EDA) complexes between PAHs andN‐iodosuccinimide (NIS). This visible light‐assisted metal‐free C−H acyloxylation reaction provides an easy access to the desired aryl carboxylates from readily available PAHs and aliphatic and aromatic carboxylic acids under mild reaction conditions. magnified image 
    more » « less