skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic shrub colonization lagged peak postglacial warmth: Molecular evidence in lake sediment from Arctic Canada
Abstract Arctic shrubification is an observable consequence of climate change, already resulting in ecological shifts and global‐scale climate feedbacks including changes in land surface albedo and enhanced evapotranspiration. However, the rate at which shrubs can colonize previously glaciated terrain in a warming world is largely unknown. Reconstructions of past vegetation dynamics in conjunction with climate records can provide critical insights into shrubification rates and controls on plant migration, but paleoenvironmental reconstructions based on pollen may be biased by the influx of exotic pollen to tundra settings. Here, we reconstruct past plant communities using sedimentary ancient DNA (sedaDNA), which has a more local source area than pollen. We additionally reconstruct past temperature variability using bacterial cell membrane lipids (branched glycerol dialkyl glycerol tetraethers) and an aquatic productivity indicator (biogenic silica) to evaluate the relative timing of postglacial ecological and climate changes at a lake on southern Baffin Island, Arctic Canada. ThesedaDNA record tightly constrains the colonization of dwarf birch (Betula, a thermophilous shrub) to 5.9 ± 0.1 ka, ~3 ka after local deglaciation as determined by cosmogenic10Be moraine dating and >2 ka later thanBetulapollen is recorded in nearby lake sediment. We then assess the paleovegetation history within the context of summer temperature and find that paleotemperatures were highest prior to 6.3 ka, followed by cooling in the centuries precedingBetulaestablishment. Together, these molecular proxies reveal thatBetulacolonization lagged peak summer temperatures, suggesting that inefficient dispersal, rather than climate, may have limited Arctic shrub migration in this region. In addition, these data suggest that pollen‐based climate reconstructions from high latitudes, which rely heavily on the presence and abundance of pollen from thermophilous taxa likeBetula, can be compromised by both exotic pollen fluxes and vegetation migration lags.  more » « less
Award ID(s):
1737712 1737750
PAR ID:
10459809
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
12
ISSN:
1354-1013
Page Range / eLocation ID:
p. 4244-4256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al.,Nat. Clim. Chang.(3), 673–677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al.,Philos. Trans. A Math. Phys. Eng. Sci.(371), 20130097 (2013) and Post et al.,Sci.Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic—documented here by multiple proxies—likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future. 
    more » « less
  2. none (Ed.)
    As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as ‘shrubification,’ has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacialsedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacialsedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families’ environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification. 
    more » « less
  3. As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as ‘shrubification,’ has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacialsedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacialsedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families’ environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification. 
    more » « less
  4. Paleo water isotope records can elucidate how the Arctic water cycle responded to past climate changes. We analyze the hydrogen isotope composition (δ2H) of plant‐derived n‐alkanoic acids (waxes) from Lake Qaupat, Baffin Island, Nunavut, Canada, to assess moisture sources and seasonality during the past 5.8 ka. We compare this record to a sedimentary ancient DNA (sedaDNA)‐inferred vascular plant record from the same lake, aiming to overcome the uncertainty of plant community impacts on leaf waxes. As the sedaDNA record reveals a stable plant community after the colonization of Betula sp. at 6.1 ka, we interpret plant wax δ2H values to reflect climate, specifically mean annual precipitation δ2H. However, the distributions of n‐alkanoic acid homologs suggest that aquatic mosses, which are not represented in the sedaDNA record, may become more abundant towards the present. Therefore, we cannot exclude the possibility that changes in the plant community cause changes in the plant wax δ2H record, particularly long‐chain waxes, which become less abundant through this record. We find that Lake Qaupat mid‐chain plant wax δ2H is enriched coincident with high Labrador Sea summer surface temperature, which suggests that local moisture sources in summer and early autumn have the greatest impact on precipitation isotopes in this region. 
    more » « less
  5. Paleo water isotope records can elucidate how the Arctic water cycle responded to past climate changes. We analyze the hydrogen isotope composition (δ2H) of plant‐derived n‐alkanoic acids (waxes) from Lake Qaupat, Baffin Island, Nunavut, Canada, to assess moisture sources and seasonality during the past 5.8 kiloannum (ka). We compare this record to a sedimentary ancient DNA (sedaDNA)‐inferred vascular plant record from the same lake, aiming to overcome the uncertainty of plant community impacts on leaf waxes. As the sedaDNA record reveals a stable plant community after the colonization of Betula sp. at 6.1 ka, we interpret plant wax δ2H values to reflect climate, specifically mean annual precipitation δ2H. However, the distributions of n‐alkanoic acid homologs suggest that aquatic mosses, which are not represented in the sedaDNA record, may become more abundant towards the present. Therefore, we cannot exclude the possibility that changes in the plant community cause changes in the plant wax δ2H record, particularly long‐chain waxes, which become less abundant through this record. We find that Lake Qaupat mid‐chain plant wax δ2H is enriched coincident with high Labrador Sea summer surface temperature, which suggests that local moisture sources in summer and early autumn have the greatest impact on precipitation isotopes in this region. 
    more » « less