skip to main content


Search for: All records

Award ID contains: 1737750

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Arctic has warmed three times the rate of the global average, resulting in extensive thaw of perennially frozen ground known as permafrost. While it is well understood that permafrost thaw will continue and likely accelerate, thaw rates are nonuniform due, in part, to the expansion of Arctic trees and tall shrubs that may increase ground temperatures. However, in permafrost regions with short‐stature vegetation (height < 40 cm), our understanding of how ground temperature regimes vary by vegetation type is limited as these sites are generally found in remote high‐latitude regions that lack in situ ground temperature measurements. This study aims to overcome this limitation by leveraging in situ shallow ground temperatures, remote sensing observations, and topographic parameters across 22 sites with varying types of short‐stature vegetation on Baffin Island, Canada, a remote region underlain by rapidly warming continuous permafrost. Results suggest that the type of short‐stature vegetation does not necessarily correspond to a distinct shallow ground temperature regime. Instead, in permafrost regions with short‐stature vegetation, factors that control snow duration, such as microtopography, may have a larger effect on evolving ground temperature regimes and thus permafrost vulnerability. These findings suggest that anticipating permafrost thaw in regions of short‐stature vegetation may be more nuanced than previously suggested.

     
    more » « less
  2. Abstract

    Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes.

     
    more » « less
  3. Abstract

    Arctic shrubification is an observable consequence of climate change, already resulting in ecological shifts and global‐scale climate feedbacks including changes in land surface albedo and enhanced evapotranspiration. However, the rate at which shrubs can colonize previously glaciated terrain in a warming world is largely unknown. Reconstructions of past vegetation dynamics in conjunction with climate records can provide critical insights into shrubification rates and controls on plant migration, but paleoenvironmental reconstructions based on pollen may be biased by the influx of exotic pollen to tundra settings. Here, we reconstruct past plant communities using sedimentary ancient DNA (sedaDNA), which has a more local source area than pollen. We additionally reconstruct past temperature variability using bacterial cell membrane lipids (branched glycerol dialkyl glycerol tetraethers) and an aquatic productivity indicator (biogenic silica) to evaluate the relative timing of postglacial ecological and climate changes at a lake on southern Baffin Island, Arctic Canada. ThesedaDNA record tightly constrains the colonization of dwarf birch (Betula, a thermophilous shrub) to 5.9 ± 0.1 ka, ~3 ka after local deglaciation as determined by cosmogenic10Be moraine dating and >2 ka later thanBetulapollen is recorded in nearby lake sediment. We then assess the paleovegetation history within the context of summer temperature and find that paleotemperatures were highest prior to 6.3 ka, followed by cooling in the centuries precedingBetulaestablishment. Together, these molecular proxies reveal thatBetulacolonization lagged peak summer temperatures, suggesting that inefficient dispersal, rather than climate, may have limited Arctic shrub migration in this region. In addition, these data suggest that pollen‐based climate reconstructions from high latitudes, which rely heavily on the presence and abundance of pollen from thermophilous taxa likeBetula, can be compromised by both exotic pollen fluxes and vegetation migration lags.

     
    more » « less
  4. Paleo water isotope records can elucidate how the Arctic water cycle responded to past climate changes. We analyze the hydrogen isotope composition (δ2H) of plant‐derived n‐alkanoic acids (waxes) from Lake Qaupat, Baffin Island, Nunavut, Canada, to assess moisture sources and seasonality during the past 5.8 ka. We compare this record to a sedimentary ancient DNA (sedaDNA)‐inferred vascular plant record from the same lake, aiming to overcome the uncertainty of plant community impacts on leaf waxes. As the sedaDNA record reveals a stable plant community after the colonization of Betula sp. at 6.1 ka, we interpret plant wax δ2H values to reflect climate, specifically mean annual precipitation δ2H. However, the distributions of n‐alkanoic acid homologs suggest that aquatic mosses, which are not represented in the sedaDNA record, may become more abundant towards the present. Therefore, we cannot exclude the possibility that changes in the plant community cause changes in the plant wax δ2H record, particularly long‐chain waxes, which become less abundant through this record. We find that Lake Qaupat mid‐chain plant wax δ2H is enriched coincident with high Labrador Sea summer surface temperature, which suggests that local moisture sources in summer and early autumn have the greatest impact on precipitation isotopes in this region. 
    more » « less
  5. Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al.,Nat. Clim. Chang.(3), 673–677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al.,Philos. Trans. A Math. Phys. Eng. Sci.(371), 20130097 (2013) and Post et al.,Sci.Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic—documented here by multiple proxies—likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.

     
    more » « less