skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stream network geometry and the spatial influence of aquatic insect subsidies across the contiguous United States
Abstract Emergent aquatic insects transport aquatic‐derived resources into terrestrial ecosystems but are rarely studied at landscape or regional scales. Here, we investigate how stream network geometry constrains the spatial influence of aquatic insect subsidies in terrestrial ecosystems. We also explore potential factors (i.e., climate, topography, soils, and vegetation) that could produce variation in stream network geometry and thus change the extent of aquatic insect subsidies from one region to another. The stream signature is the percentage of aquatic insect subsidies traveling a given distance into the terrestrial ecosystem, relative to what comes out of the stream. We use this concept to model the spatial extent (area) and distribution (spatial patterning) of aquatic subsidies in terrestrial ecosystems across the contiguous United States. Our findings suggest that at least 8% of the subsidies measured at the aquatic–terrestrial boundary (i.e., the 8% stream signature) are typically transferred throughout the entire watershed and that variation in this spatial extent is largely influenced by the drainage density of the stream network. Moreover, we found stream signatures from individual stream reaches overlap such that the spatial extent of the 8% stream signature often includes inputs from multiple stream reaches. Landscape‐scale stream network characteristics increased the area of overlapping stream signatures more than reach‐scale channel properties. Finally, we found runoff was an important factor influencing stream network geometry suggesting a potential effect of climate on aquatic‐to‐terrestrial linkages that have been understudied.  more » « less
Award ID(s):
1802872
PAR ID:
10459811
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
11
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ecological flows across ecosystem boundaries are typically studied at spatial scales that limit our understanding of broad geographical patterns in ecosystem linkages. Aquatic insects that metamorphose into terrestrial adults are important resource subsidies for terrestrial ecosystems. Traits related to their development and dispersal should determine their availability to terrestrial consumers. Here, we synthesize geospatial, aquatic biomonitoring and biological traits data to quantify the relative importance of several environmental gradients on the potential spatial and temporal characteristics of aquatic insect subsidies across the contiguous United States. We found the trait composition of benthic macroinvertebrate communities varies among hydrologic regions and could affect how aquatic insects transport subsidies as adults. Further, several trait–environment relationships were underpinned by hydrology. Large bodied taxa that could disperse further from the stream were associated with hydrologically stable conditions. Alternatively, hydrologically variable conditions were associated with multivoltine taxa that could extend the duration of subsidies with periodic emergence events throughout the year. We also found that anthropogenic impacts decrease the frequency of individuals with adult flight but potentially extend the distance subsidies travel into the terrestrial ecosystem. Collectively, these results suggest that natural and anthropogenic gradients could affect aquatic insect subsidies by changing the trait composition of benthic macroinvertebrate communities. The conceptual framework and trait–environment relationships we present shows promise for understanding broad geographical patterns in linkages between ecosystems. 
    more » « less
  2. Abstract High‐altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high‐altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2evasion from stream surfaces was up to an order of magnitude greater than soil CO2efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2and carbon availability) in the lower reaches of the stream. A 4‐m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250‐m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high‐altitude, tropical, headwater catchments. 
    more » « less
  3. Abstract Duration and temporal stability of resource subsidy largely affect the response of recipient communities. Factors that influence the temporal dynamics of resource subsidy from aquatic‐to‐terrestrial habitats by emerging aquatic insects were examined in this study. By measuring the flux of aquatic insect emergence from six habitats in a river over summer, we found that the timing of emergence varied by habitats for each dominant taxa, and that different species emerged at different times of the summer sequentially. We found that spatial variation in the emergence timing caused by the spatial heterogeneity of the water temperature, and so on in the source habitat can temporally stabilize the subsidy of each species from the whole river. Similarly, we found that the variation in emergence timing between species contributed to the temporal stability of subsidies from each habitat. The contribution of spatial heterogeneity to the temporal stability varied by the focal species and the contribution of species diversity varied by habitats. This study demonstrates how the ecological function of spatial heterogeneity and species diversity crosses the boundary of ecosystems by temporally stabilizing resource subsidies. 
    more » « less
  4. ABSTRACT Decades‐old research describes dynamic interdependence among aquatic and terrestrial food webs, leading to calls for integrating cross‐ecosystem linkages with landscape ecology to evaluate dynamics of spatially‐subsidised food webs. Though development of meta‐community theory has suggested that such spatial dynamics may help sustain biodiversity, empirical data remain limited. In northern Yellowstone National Park, over a century of terrestrial wildlife dynamics, including the extirpation and subsequent reintroduction of wolves, have contributed to a habitat mosaic in which stream‐riparian ecosystems are dominated by either woody or herbaceous vegetation. In the context of this habitat mosaic, we addressed the overarching questions: (1) Are habitat mosaics associated with spatial and temporal variation in reciprocal fluxes and linked food webs and (2) how do biodiversity, organism traits and species interactions influence, and are they influenced by, that spatial and temporal variation?From 2019 to 2021, we intensively sampled eight headwater streams to characterise reciprocal fluxes of aquatic and terrestrial invertebrates and the patterns of potential responses by fish, birds, bats and spiders. We evaluated sites individually as well as how they contributed to a meta‐community.We found that local stream‐riparian ecosystems contributed to a mosaic in which reciprocal fluxes of invertebrates among local patches were asynchronous and tracked by both aquatic and terrestrial consumers in ways mediated by organism traits. Within sites, aquatic and terrestrial invertebrate fluxes were seasonally asynchronous with each other, but these patterns varied from site to site. Across the mosaic, comparisons of daily aquatic insect emergence varied from 25% to 167% among streams and did so variably throughout the year, revealing asynchronous dynamics created at the meta‐community scale. Daily inputs of terrestrial invertebrates were similarly asynchronous across the mosaic, varying from 14% to 170%. These asynchronies were positively correlated with invertebrate beta diversity and associated with varying riparian vegetation, stream temperature, and flow regimes. In turn, in situ consumers tracked the allochthonous invertebrate prey in ways that were mediated by site context (i.e., local habitat characteristics) and consumer traits (e.g., range, foraging strategy and breeding requirements).Based on these observations as an example, we infer there is not one way for food webs to be reciprocally and spatially linked, but multiple ways that can vary both across a spatial mosaic and through time. Our findings provide empirical evidence suggesting potential relationships between habitat complexity and the maintenance of biodiversity via aquatic‐terrestrial reciprocal fluxes and dynamic interdependence across mosaics. 
    more » « less
  5. In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed‐scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional‐to‐global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large‐sample attribute datasets strengthens continental‐scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large‐sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales. 
    more » « less