Abstract JWST observations demonstrate that supermassive black holes (SMBHs) exist by redshiftsz≳ 10, providing further evidence for “direct collapse” black hole (BH) formation, whereby massive (∼103–5M⊙) SMBH seeds are generated within a few million years as a byproduct of the rapid inflow of gas into the centers of protogalaxies. Here we analyze the intermediate “quasi-star” phase that accompanies some direct-collapse models, during which a natal BH accretes mass from and energetically sustains (through accretion) an overlying gaseous envelope. We argue that previous estimates of the maximum BH mass that can be reached during this stage, ∼1% of the total quasi-star mass, are unphysical, and arise from underestimating the efficiency with which energy can be transported outward from regions close to the BH. We construct new quasi-star models that consist of an inner, “saturated convection” region (which conforms to a convection-dominated accretion flow near the BH) matched to an outer, adiabatic envelope. These solutions exist up to a BH mass of ∼60% of the total quasi-star mass, at which point the adiabatic envelope contains only 2% of the mass (with the remaining ∼38% in the saturated-convection region), and this upper limit is reached within a time of 20–40 Myr. We conclude that quasi-stars remain a viable route for producing SMBHs at large redshifts, which is consistent with recent JWST observations.
more »
« less
Magnetic fields catalyse massive black hole formation and growth
ABSTRACT Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. If the poloidal component of the field (relative to the rotational axis of a star-forming disc) becomes organized on scales ≲r and attains an energy of order a few per cent of the turbulent energy in the disc, then dynamo effects are expected to generate magnetic torques capable of increasing the inflow speed and thickening the disc. The accretion flow can transport matter towards the centre of mass at a rate adequate to create and grow a massive direct-collapse black hole seed and fuel the subsequent AGN at a high rate, without becoming gravitationally unstable. Fragmentation and star formation are thus suppressed and do not necessarily deplete the mass supply for the accretion flow, in contrast to prevailing models for growing and fuelling SMBHs through disc accretion.
more »
« less
- Award ID(s):
- 1903335
- PAR ID:
- 10459831
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society: Letters
- Volume:
- 526
- Issue:
- 1
- ISSN:
- 1745-3925
- Format(s):
- Medium: X Size: p. L94-L99
- Size(s):
- p. L94-L99
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The brightest steady sources of radiation in the universe, active galactic nuclei (AGNs), are powered by gas accretion on to a central supermassive black hole (SMBH). The large sizes and accretion rates implicated in AGN accretion discs are expected to lead to gravitational instability and fragmentation, effectively cutting off mass inflow to the SMBH. Radiative feedback from disc-embedded stars has been invoked to yield marginally stable, steady-state solutions in the outer discs. Here, we examine the consequences of this star formation with a semi-analytical model in which stellar-mass black hole (sBH) remnants in the disc provide an additional source of stabilizing radiative feedback. Assuming star formation seeds the embedded sBH population, we model the time-evolving feedback from both stars and the growing population of accreting sBHs. We find that in the outer disc, the luminosity of the sBHs quickly dominates that of their parent stars. However, because sBHs consume less gas than stars to stabilize the disc, the presence of the sBHs enhances the mass flux to the inner disc. As a result, star formation persists over the lifetime of the AGN, damped in the outer disc, but amplified in a narrow ring in the inner disc. Heating from the embedded sBHs significantly modifies the disc’s temperature profile and hardens its spectral energy distribution, and direct emission from the sBHs adds a new hard X-ray component.more » « less
-
ABSTRACT Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.more » « less
-
ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.more » « less
-
ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.more » « less
An official website of the United States government
