skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pollen competition is the mechanism underlying a variety of evolutionary phenomena in dioecious plants
Summary It has long been known that more pollen grains often arrive on stigmas than there are ovules to fertilize, resulting in pollen competition. Moreover, this competition among pollen grains (gametophytes) depends, in part, on their extensive haploid gene expression. Here I review how this leads to a variety of phenomena in dioecious plants of interest to evolutionary biologists. For example, pollen competition can lead to extreme female‐biased sex ratios. In addition, gene expression by individual pollen grains can slow mutation accumulation and degeneration of the Y chromosome. Lastly, I review work on how the haploid selection resulting from pollen competition has been proposed to influence which alleles are linked to the Y chromosome, and some recent empirical evidence in support of this theory.  more » « less
Award ID(s):
1753629
PAR ID:
10459835
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
224
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1075-1079
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wittkopp, Patricia (Ed.)
    Abstract Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome. 
    more » « less
  2. Abstract Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression. 
    more » « less
  3. Abstract Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids. 
    more » « less
  4. Meiklejohn, Colin (Ed.)
    Sex chromosomes often evolve unique patterns of gene expression during spermatogenesis. In many species, sex-linked genes are downregulated during meiosis in response to asynapsis of the heterogametic sex chromosome pair (meiotic sex chromosome inactivation; MSCI). This process has evolved convergently across many taxa with independently derived sex chromosomes. Our understanding how quickly MSCI can evolve and whether it is connected to the degree of sequence degeneration remains limited. Teleost fish are a noteworthy group to investigate MSCI because sex chromosomes have evolved repeatedly across species, often over short evolutionary timescales. Here, we investigate whether MSCI occurs in the threespine stickleback fish (Gasterosteus aculeatus), which have an X and Y chromosome that evolved less than 26 million years ago. Using single-cell RNA-seq, we found that the X and Y chromosomes do not have a signature of MSCI, maintaining gene expression across meiosis. Using immunofluorescence, we also show the threespine stickleback do not form a condensed sex body around the X and Y, a feature of MSCI in many species. We did not see patterns of gene content evolution documented in other species with MSCI. Y-linked ampliconic gene families were expressed across multiple stages of spermatogenesis, rather than being restricted to post-meiotic stages, like in mammals. Our work shows MSCI does not occur in the threespine stickleback fish and has not shaped the evolution of the Y chromosome. In addition, the absence of MSCI in the threespine stickleback suggests this process may not be a conserved feature of teleost fish, despite overall sequence degeneration and structural evolution of the Y chromosome, and argues for additional investigation in other species. We also observed testis-dependent differences in coding and expression evolution for X-linked genes, revealing evidence of testis specific faster-X effect and gene-by-gene dosage compensation. 
    more » « less
  5. The house mouse X and Y chromosomes have recently acquired multicopy, rapidly evolving gene families representing an evolutionary arms race. This arms race between proteins encoded by X-linkedSlxl1/Slxand Y-linkedSlygene families can distort offspring sex ratio, but how these proteins compete remains unknown. Here, we report howSlxl1/SlxandSlyencoded proteins compete in a protein family–specific and dose-dependent manner using yeast. Specifically, SLXL1 competes with SLY1 and SLY2 for binding to the Spindlin SPIN1. Similarly, SLX competes with SLY2 for binding the Spindlin SSTY2. These competitions are driven by the N termini of SLXL1, SLX, SLY1, and SLY2 binding to the third Tudor domains of SPIN1 and SSTY2. SLY1 and SLY2 form homo- and heterodimers, suggesting that the competition is between complex multimers. Residues under positive selection mapping to the interaction domains and rapid exon gain/loss are consistent with competition between the X- and Y-linked gene families. Our findings support a model in which dose-dependent competition of these X- and Y-linked encoded proteins to bind Spindlins occurs in haploid X- and Y-spermatids to influence X- versus Y-sperm fitness and thus sex ratio. 
    more » « less