skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation of annual apparent survival and detection rates with age, year and individual identity in male Weddell seals ( Leptonychotes weddellii ) from long‐term mark‐recapture data
Abstract Exploring age‐ and sex‐specific survival rates provides insight regarding population behavior and life‐history trait evolution. However, our understanding of how age‐specific patterns of survival, including actuarial senescence, compare between the sexes remains inadequate. Using 36 years of mark‐recapture data for 7,516 male Weddell seals (Leptonychotes weddellii) born in Erebus Bay, Antarctica, we estimated age‐specific annual survival rates using a hierarchical model for mark‐recapture data in a Bayesian framework. Our male survival estimates were moderate for pups and yearlings, highest for 2‐year‐olds, and gradually declined with age thereafter such that the oldest animals observed had the lowest rates of any age. Reports of senescence in other wildlife populations of species with similar longevity occurred at older ages than those presented here. When compared to recently published estimates for reproductive Weddell seal females, we found that peak survival rates were similar (males: 0.94, 95% CI = 0.92–0.96; females: 0.92, 95% CI = 0.93–0.95), but survival rates at older ages were lower in males. Age‐specific male Weddell seal survival rates varied across years and individuals, with greater variation occurring across years. Similar studies on a broad range of species are needed to contextualize these results for a better understanding of the variation in senescence patterns between the sexes of the same species, but our study adds information for a marine mammal species to a research topic dominated by avian and ungulate species.  more » « less
Award ID(s):
1640481
PAR ID:
10459847
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Population Ecology
Volume:
62
Issue:
1
ISSN:
1438-3896
Format(s):
Medium: X Size: p. 134-150
Size(s):
p. 134-150
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sex‐related differences in vital rates that drive population change reflect the basic life history of a species. However, for visually monomorphic bird species, determining the effect of sex on demographics can be a challenge. In this study, we investigated the effect of sex on apparent survival, recruitment, and breeding propensity in the Adélie penguin (Pygoscelis adeliae), a monochromatic, slightly size dimorphic species with known age, known sex, and known breeding history data collected during 1996–2019 (n = 2127 birds) from three breeding colonies on Ross Island, Antarctica. Using a multistate capture–mark–recapture maximum‐likelihood model, we estimated apparent survival (), recapture (resighting) probability (), and the probability of transitioning among breeding states and moving between colonies (; colony‐specific non‐juvenile pre‐breeders, breeders, and non‐breeders). Survival rate varied by breeding status and colony, but not sex, and pre‐breeders had higher survival rates than breeders and non‐breeders. Females had a higher probability of recruiting into the breeding population each year and may enter the breeding pool at younger ages. In contrast, both sexes had the same probability of breeding from year to year once they had recruited. Although we detected no direct sex effects on survival, the variation in recruitment probability and age‐at‐first reproduction, along with lower survival rates of breeders compared to pre‐breeders, likely leads to shorter lifespans for females. This is supported by our findings of a male‐biased mean adult sex ratio (ASR) of 1.4 males for every female ( proportion of males = 0.57, SD = 0.07) across all colonies and years in this metapopulation. Our study illustrates how important it can be to disentangle sex‐related variation in population vital rates, particularly for species with complex life histories and demographic dynamics. 
    more » « less
  2. null (Ed.)
    Male–male contest behavior can contribute to spatial distributions of male pinnipeds during breeding seasons. To maximize breeding opportunities, the most competitive males would be expected to be surrounded by the highest numbers of reproductive‐age females. As information regarding fine‐scale spatial ecology of Weddell seals is lacking, we performed an exploratory study using kernel density analyses to evaluate age‐specific habitat use of male Weddell seals in Erebus Bay, Antarctica. Additionally, we investigated the relationship between age and number of surrounding reproductive‐age females using a competing set of regression models in a Bayesian framework that considered different functional forms of age while incorporating individual heterogeneity. As male adult Weddell seals aged, to at least 20 years, they were more likely to be found in areas associated with the greatest densities of reproductive‐age females, but individual heterogeneity also influenced the number of reproductive‐age female neighbors. The youngest males tended to haul out in offshore areas associated with better hunting, and older males tended to settle in more nearshore areas associated with more pup production. Our findings from this preliminary investigation indicate that male Weddell seal spatial behavior during the breeding season varies with age and individual and might be related to reproductive activity. 
    more » « less
  3. Abstract Actuarial senescence (called ‘senescence’ hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among‐individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism—the unique sub‐type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype—may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature.In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander,Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture–recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture–recapture models and Bayesian age‐dependent survival models.Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age‐dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late‐breeding females also lived longer but showed a senescence rate similar to that of early‐breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late‐breeding males lived longer but, unexpectedly, had higher senescence than early‐breeding males.Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing. 
    more » « less
  4. Abstract Many ectotherms rely on temperature cues experienced during development to determine offspring sex. The first descriptions of temperature‐dependent sex determination (TSD) were made over 50 years ago, yet an understanding of its adaptive significance remains elusive, especially in long‐lived taxa.One novel hypothesis predicts that TSD should be evolutionarily favoured when two criteria are met—(a) incubation temperature influences annual juvenile survival and (b) sexes mature at different ages. Under these conditions, a sex‐dependent effect of incubation temperature on offspring fitness arises through differences in age at sexual maturity, with the sex that matures later benefiting disproportionately from temperatures that promote juvenile survival.The American alligator (Alligator mississippiensis) serves as an insightful model in which to test this hypothesis, as males begin reproducing nearly a decade after females. Here, through a combination of artificial incubation experiments and mark‐recapture approaches, we test the specific predictions of the survival‐to‐maturity hypothesis for the adaptive value of TSD by disentangling the effects of incubation temperature and sex on annual survival of alligator hatchlings across two geographically distinct sites.Hatchlings incubated at male‐promoting temperatures (MPTs) consistently exhibited higher survival compared to those incubated at female‐promoting temperatures. This pattern appears independent of hatchling sex, as females produced from hormone manipulation at MPT exhibit similar survival to their male counterparts.Additional experiments show that incubation temperature may affect early‐life survival primarily by affecting the efficiency with which maternally transferred energy resources are used during development.Results from this study provide the first explicit empirical support for the adaptive value of TSD in a crocodilian and point to developmental energetics as a potential unifying mechanism underlying persistent survival consequences of incubation temperature. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Abstract Animals’ space requirements may vary according to life-history and social considerations. We observed 516 wild adult Asian elephants from both sexes, over 9 years, to investigate how life-history traits and social behavior influence protected-area (PA) use at Udawalawe National Park, Sri Lanka. Male PA-use, quantified in terms of average between-sightings-interval (BSI), was significantly influenced by the interaction of age class and motivational state (i.e. reproduction vs. foraging). Musth lengthened with age, with a median of 24.5 days for ages 21–30, 32.5 days for ages 31–40, and 45 days for those > 40. A minority (11%) used it exclusively during musth, while others used it exclusively for foraging (44%) or both (45%). Males using it in both states and older musth-only males were more likely to be seen across years. There were 16 social communities containing between 2–22 adult females. Females’ BSI was significantly influenced by social ties, but this relationship was weak, because members of social communities do not necessarily disperse together, resulting in high individual variation in space-use. Inter-annual variability in sightings among individuals of both sexes indicates that around ¾ of the population is likely non-residential across years, challenging the prevailing fortress-conservation paradigm of wildlife management. 
    more » « less