skip to main content


Title: Participatory Risk Assessment of Humpback Whale (Megaptera novaeangliae) and Leatherback Turtle (Dermochelys coriacea) Bycatch in Northern Peru
Uncertainties about the magnitude of bycatch in poorly assessed fisheries impede effective conservation management. In northern Peru, small-scale fisheries (SSF) bycatch negatively impacts marine megafauna populations and the livelihoods of fishers which is further elevated by the under-reporting of incidents. Within the last decade, accounts of entangled humpback whales (HBW) ( Megaptera novaeangliae ) off the northern coast of Peru have increased, while Eastern Pacific leatherback turtles (LBT) ( Dermochelys coriacea ) have seen over a 90% decline in nesting populations related in large part to bycatch mortality. By leveraging the experience and knowledge of local fishers, our research objectives were to use a low-cost public participation mapping approach to provide a spatio-temporal assessment of bycatch risk for HBW and LBT off two Peruvian fishing ports. We used an open-source, geographic information systems (GIS) model, the Bycatch Risk Assessment (ByRA), as our platform. Broadly, ByRA identifies high bycatch risk areas by estimating the intersection of fishing areas (i.e., stressors) with species habitat and evaluating the exposure and consequence of possible interaction between the two. ByRA outputs provided risk maps and gear risk percentages categorized as high, medium, and low for the study area and seven subzones for HBW in the austral winter and LBT in the austral summer. Overall, the highest bycatch risk for both species was identified within gillnet fisheries near the coast. Bycatch risk for most gear types decreased with distance from the coast. When we separated the ByRA model by port, our map outputs indicate that bycatch management should be port specific, following seasonal and spatial variations for HBW, and specific fishing gear impacts for HBW and LBT. Combined with direct bycatch mitigation techniques, ByRA can be a supportive and informative tool for addressing specific bycatch threats and marine megafauna conservation goals. ByRA supports a participatory framework offering rapid visual information via risk maps and replicable methods for areas with limited resources and data on fisheries and species habitat.  more » « less
Award ID(s):
1633336
NSF-PAR ID:
10459922
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conservation of migratory species exhibiting wide‐ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep‐diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear‐specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space‐use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high‐risk interactions with turtles in a residential, deep‐diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high‐risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.

     
    more » « less
  2. Incidental capture, or bycatch, of marine species is a global conservation concern. Interactions with fishing gear can cause mortality in air-breathing marine megafauna, including sea turtles. Despite this, interactions between sea turtles and fishing gear—from a behavior standpoint—are not sufficiently documented or described in the literature. Understanding sea turtle behavior in relation to fishing gear is key to discovering how they become entangled or entrapped in gear. This information can also be used to reduce fisheries interactions. However, recording and analyzing these behaviors is difficult and time intensive. In this study, we present a machine learning-based sea turtle behavior recognition scheme. The proposed method utilizes visual object tracking and orientation estimation tasks to extract important features that are used for recognizing behaviors of interest with green turtles ( Chelonia mydas ) as the study subject. Then, these features are combined in a color-coded feature image that represents the turtle behaviors occurring in a limited time frame. These spatiotemporal feature images are used along a deep convolutional neural network model to recognize the desired behaviors, specifically evasive behaviors which we have labeled “reversal” and “U-turn.” Experimental results show that the proposed method achieves an average F1 score of 85% in recognizing the target behavior patterns. This method is intended to be a tool for discovering why sea turtles become entangled in gillnet fishing gear. 
    more » « less
  3. Abstract

    Periodically harvested closures are a widespread, centuries‐old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo‐Pacific.

    We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks.

    We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure.

    Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade‐off between periodic closures that maximized harvest efficiency and no‐take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to ≤18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures.

    Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no‐take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well‐managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.

     
    more » « less
  4. In southern New England, rapid ocean warming over the past two decades has caused substantial redistributions of fishes, invertebrates, and the fisheries they support. The rapid emergence of the warm water-tolerant Jonah crab (Cancer borealis) fishery, once discarded as bycatch from the now declining lobster fishery, illustrates a prime example of climate-adaptive shifts in southern New England fisheries. However, limited data exist on the basic life history of Jonah crabs, despite their growing economic and societal value. This hinders ocean management capacity to meet multiple ecological, economic, and socio-cultural goals of sustainable harvest. Off the southern coast of Rhode Island, Jonah crabs are currently harvested in two fishery zones (inshore and offshore) delineated as holdovers from the lobster management zones. Jonah crabs landed in the offshore fishing zone are significantly larger, on average, than those landed in the inshore fishing zone. This presentation gives an overview of a study developed to test the hypothesis that these size differences reflect ontogenetic migration of Jonah crabs from the inshore to offshore fishing zones. To do this, we developed seasonally resolved isoscapes (isotope maps) of the region, which revealed distinct geospatial gradients in environmental stable isotope values between inshore and offshore necessary to track potential movement of Jonah crabs between fishing zones. We then used stable isotope analysis of three Jonah crab tissues with differential metabolic turnover times: the carapace (reflecting residence one year ago), muscle (reflecting residence averaged over the last ~4 months), and hepatopancreas (reflecting residence averaged over the last ~4 weeks) to construct an “isotopic clock” of residence throughout the regional isoscapes. This work provides key data on critical life history characteristics of the Jonah crab through a collaborative effort by scientists at the University of Rhode Island and the Rhode Island Department of Environmental Management to inform management decisions on this emerging climate-adaptive fishery. 
    more » « less
  5. null (Ed.)
    Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning. 
    more » « less