skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Deep Eastern Boundary Current in the Chile Basin
Abstract Hydrographic data and tracers from several ship‐based sections show the location and structure of a deep eastern boundary current in the Chile Basin. The current is centered above the Peru‐Chile Trench at 2,500–3,400 m and transports up to 6 Sv of low‐potential vorticity, high‐silicate water south toward Drake Passage. Deep current velocities from direct Lowered Acoustic Doppler Current Profiler measurements are up to about 15 cm/s southward. The hydrographic data, as well as potential vorticity and silicate distributions, show that the current is comprised to a large extent of flow from the west moving along the southern flank of the Sala y Gomez Ridge and Nazca Ridge, and to a lesser extent from a flow along the eastern boundary entering directly from the Panama Basin. At the southern edge of the Chile Trench, the current weakens and partly turns offshore to cross the Chile Ridge through a complex region of passages. Above the southern flank of the Chile Rise the flow joins a broader eastward flow; together, these waters return to the eastern boundary before entering Drake Passage.  more » « less
Award ID(s):
1658479
PAR ID:
10459947
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
1
ISSN:
2169-9275
Page Range / eLocation ID:
p. 27-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A system of meridional ridges in the western South Pacific Ocean frame the Lau Basin and Havre Trough, and form a barrier to direct communication between the far western South Pacific basins and the interior South Pacific Ocean. The eastern side of this system comprises the Tonga and Kermadec Ridges, the location of the main deep western boundary current entering the Pacific Ocean. Observations from floats released in the Lau Basin as part of the RIDGE2000 program suggested the presence of a western boundary current along the Lau Ridge exiting into the North Fiji Basin. Those observations, together with Argo sub-surface float data and repeat hydrographic sections, confirm and expand the boundary current observations along the Lau Ridge throughout the Lau Basin and into the Havre Trough, along the Colville Ridge. The observations also reveal two previously unrecognized westward flowing jets bisecting the Lau Basin and Havre Trough. Using an extension to the classic Stommel-Arons abyssal circulation model, the predicted strength and location of these boundary currents and their bifurcation is compared with the float observations. The model provides a simplified view of the dynamics controlling the boundary current structure in the deep basins. A comparison of transport within the western boundary current derived from float data, hydrographic sections, and the idealized analytical model indicates that roughly 4 Sv (below 1,000 db) is transported northward through the Lau Basin, exiting into the North Fiji Basin. 
    more » « less
  2. Abstract The Iceland Scotland Overflow Water (ISOW) plume supplies approximately a third of the production of North Atlantic Deep Water and is a key component of the meridional overturning circulation (MOC). The Overturning in the Subpolar North Atlantic Program (OSNAP) mooring array in the Iceland Basin has provided high‐resolution observations of ISOW from 2014 to 2020. The ISOW plume forms a deep western boundary current along the eastern flank of Reykjanes Ridge, and its total transport varies by greater than a factor of two on intra‐seasonal timescales. EOF analysis of moored current meter records reveal two dominant modes of velocity variance. The first mode explains roughly 20% of the variance and shows a bottom intensified structure concentrated in the rift valley that runs parallel to the ridge axis. The transport anomaly reconstructed from the first mode explains nearly 80% of the total ISOW plume transport variance. The second mode accounts for 15% of velocity variance, but only 5% of the transport variance. The geostrophically estimated transport (2.9 Sv) recovers only 70% of the total ISOW transport along the ridge flank estimated from the direct current meter observations (4.2 Sv), implying a significant ageostrophic component of ISOW mean transport and variability. Ageostrophic flow is strongly linked to the leading mode of velocity variability within the rift valley. The ISOW transport variability along the upper and middle part of the ridge is further shown to correlate with changes in the strength of deep MOC limb across the basin‐wide OSNAP array. 
    more » « less
  3. null (Ed.)
    The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affects the Atlantic Meridional Overturning Circulation together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, the Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from deep-sea drilling records. To advance our knowledge and understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program (IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the central South Pacific (U1539, U1540, and U1541), (2) two sites at the Chile margin (U1542 and U1544), and (3) one site from the pelagic eastern South Pacific (U1543) close to the entrance to the Drake Passage. Because of persistently stormy conditions and the resulting bad weather avoidance, we were not successful in recovering the originally planned Proposed Site CSP-3A in the central South Pacific in the Polar Frontal Zone. The drilled sediments at Sites U1541 and U1543 reach back to the late Miocene, and those at Site U1540 reach back to the early Pliocene. High sedimentary rate Pleistocene sedimentary sequences were drilled both in the central South Pacific (Site U1539) and along the Chile margin. Taken together, the sites represent a depth transect from ~1100 m at the Chile margin site (U1542) to ~4070 m in the central South Pacific (Site U1539) and allow investigation of changes in the vertical structure of the ACC, a key issue for understanding the role of the Southern Ocean in the global carbon cycle. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic-, carbonate-, and opal-based proxies to address our objectives of reconstructing with unprecedented stratigraphic detail surface to deep-ocean variations and their relation to atmosphere and cryosphere changes through stadial to interstadial, glacial to interglacial, and warmer than present time intervals. 
    more » « less
  4. We investigate the role of Southern Ocean topography and wind stress in the deep and abyssal ocean overturning and water mass composition using a suite of idealized global ocean circulation models. Specifically, we address how the presence of a meridional ridge in the vicinity of Drake Passage and the formation of an associated Southern Ocean gyre influence the water mass composition of the abyssal cell. Our experiments are carried out using a numerical representation of the global ocean circulation in an idealized two-basin geometry under varying wind stress and Drake Passage ridge height. In the presence of a low Drake Passage ridge, the overall strength of the meridional overturning circulation is primarily influenced by wind stress, with a topographically induced weakening of the middepth cell and concurrent strengthening of the abyssal cell occurring only after ridge height passes 2500 m. Passive tracer experiments show that a strengthening middepth cell leads to increased abyssal ventilation by North Atlantic water masses, as more North Atlantic Deep Water (NADW) enters the Southern Ocean and then spreads into the Indo-Pacific. We repeat our tracer experiments without restoring in the high-latitude Southern Ocean in order to identify the origin of water masses that circulate through the Southern Ocean before sinking into the abyss as Antarctic Bottom Water. Our results from these “exchange” tracer experiments show that an increasing ridge height in Drake Passage and the concurrent gyre spinup lead to substantially decreased NADW-origin waters in the abyssal ocean, as more surface waters from north of the Antarctic Circumpolar Current (ACC) are transferred into the Antarctic Bottom Water formation region. Significance StatementThe objective of this study is to investigate how topographic features in the Southern Ocean can affect the overall structure of Earth’s large-scale ocean circulation and the distribution of water masses in the abyssal ocean. We focus on the Southern Ocean because the region is of central importance for exchange between the Atlantic and Indo-Pacific Ocean basins and for CO2and heat uptake into the abyssal ocean. Our results indicate that Southern Ocean topography plays a major role in the overall circulation by 1) controlling the direct transfer of abyssal waters from the Atlantic to the Indo-Pacific via its influence on the Atlantic meridional overturning circulation and 2) controlling the coupling between the abyssal ocean and surface waters north of the Antarctic Circumpolar Current via the Southern Ocean gyre. 
    more » « less
  5. Abstract This study of the first continuous multiyear observations of the East Reykjanes Ridge Current (ERRC) reveals a highly variable, mostly barotropic southwestward flow with a mean transport of 10–13 Sv. The ERRC effectively acts as a western boundary current in the Iceland Basin on the eastern flank of the Reykjanes Ridge. As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), continuous measurements of the ERRC have been maintained for the first time using acoustic Doppler current profilers, current meters, and dynamic height moorings at six mooring sites near 58°N since 2014. Together with satellite altimetry and Argo profile and drift data, the mean transport, synoptic variability, water mass properties, and upstream and downstream pathways of the ERRC are examined. Results show that the ERRC forms in the northeastern Iceland Basin at the convergence of surface waters from the North Atlantic Current and deeper Icelandic Slope Water formed along the Iceland‐Faroe Ridge. The ERRC becomes denser as it cools and freshens along the northern and western topography of the Basin before retroflecting over the Reykjanes Ridge near 59°N into the Irminger Current. Analysis of the flow‐weighted density changes along the ERRC's path reveals that it is responsible for about one third of the net potential density change of waters circulating around the rim of the subpolar gyre. 
    more » « less