skip to main content


Title: Nitrification and Nitrous Oxide Production in the Offshore Waters of the Eastern Tropical South Pacific
Abstract

Marine oxygen deficient zones are dynamic areas of microbial nitrogen cycling. Nitrification, the microbial oxidation of ammonia to nitrate, plays multiple roles in the biogeochemistry of these regions, including production of the greenhouse gas nitrous oxide (N2O). We present here the results of two oceanographic cruises investigating nitrification, nitrifying microorganisms, and N2O production and distribution from the offshore waters of the Eastern Tropical South Pacific. On each cruise, high‐resolution measurements of ammonium ([NH4+]), nitrite ([NO2]), and N2O were combined with15N tracer‐based determination of ammonia oxidation, nitrite oxidation, nitrate reduction, and N2O production rates. Depth‐integrated inventories of NH4+and NO2were positively correlated with one another and with depth‐integrated primary production. Depth‐integrated ammonia oxidation rates were correlated with sinking particulate organic nitrogen flux but not with primary production; ammonia oxidation rates were undetectable in trap‐collected sinking particulate material. Nitrite oxidation rates exceeded ammonia oxidation rates at most mesopelagic depths. We found positive correlations between archaealamoAgenes and ammonia oxidation rates and betweenNitrospina‐like 16S rRNA genes and nitrite oxidation rates. N2O concentrations in the upper oxycline reached values of >140 nM, even at the western extent of the cruise track, supporting air‐sea fluxes of up to 1.71 μmol m−2 day−1. Our results suggest that a source of NO2other than ammonia oxidation may fuel high rates of nitrite oxidation in the offshore Eastern Tropical South Pacific and that air‐sea fluxes of N2O from this region may be higher than previously estimated.

 
more » « less
NSF-PAR ID:
10449999
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
35
Issue:
2
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrous oxide (N2O) is a powerful greenhouse gas, and oceanic sources account for up to one third of the total natural flux to the atmosphere. In oxygen‐deficient zones (ODZs) like the Eastern Tropical North Pacific (ETNP), N2O can be produced and consumed by several biological processes. In this study, the concentration and isotopocule ratios of N2O from a 2016 cruise in the ETNP were analyzed to examine sources of and controls on N2O cycling across this region. Along the north‐south transect, three distinct biogeochemical regimes were identified: background, core‐ODZ, and high‐N2O stations. Background stations were characterized by smaller variations in N2O concentration and isotopic profiles relative to the other regimes. Core‐ODZ stations were characterized by co‐occurring N2O production and consumption at anoxic depths, indicated by high δ18O‐N2O (>90‰) and low δ15N2Oβ(<−10‰) values, and confirmed by a time‐dependent model, which indicated that N2O production via denitrification was significant and may occur with a nonzero site preference. High‐N2O stations, located at the periphery of a mesoscale eddy, were defined by N2O reaching 126.07 ± 12.6 nM and low oxygen concentrations expanding into near‐surface isopycnals. At these stations, model results indicated significant N2O production from ammonia‐oxidizing archaea and denitrification from nitrate at the N2O maximum within the oxycline, while bacterial nitrification and denitrification from nitrite were insignificant. This study also represents the first in the ETNP to link N2O production mechanisms to a mesoscale eddy through isotopocule measurements, suggesting the importance of eddies to spatiotemporal variability in N2O cycling and emissions from this region.

     
    more » « less
  2. Abstract

    The ocean is estimated to contribute up to ~20% of global fluxes of atmospheric nitrous oxide (N2O), an important greenhouse gas and ozone depletion agent. Marine oxygen minimum zones contribute disproportionately to this flux. To further understand the partition of nitrification and denitrification and their environmental controls on marine N2O fluxes, we report new relationships between oxygen concentration and rates of N2O production from nitrification and denitrification directly measured with15N tracers in the Eastern Tropical Pacific. Highest N2O production rates occurred near the oxic‐anoxic interface, where there is strong potential for N2O efflux to the atmosphere. The dominant N2O source in oxygen minimum zones was nitrate reduction, the rates of which were 1 to 2 orders of magnitude higher than those of ammonium oxidation. The presence of oxygen significantly inhibited the production of N2O from both nitrification and denitrification. These experimental data provide new constraints to a multicomponent global ocean biogeochemical model, which yielded annual oceanic N2O efflux of 1.7–4.4 Tg‐N (median 2.8 Tg‐N, 1 Tg = 1012 g), with denitrification contributing 20% to the oceanic flux. Thus, denitrification should be viewed as a net N2O production pathway in the marine environment.

     
    more » « less
  3. The spatial distribution of marine di-nitrogen (N2) fixation informs our understanding of the sensitivities of this process as well as the potential for this new nitrogen (N) source to drive export production, influencing the global carbon (C) cycle and climate. Using geochemically-derived δ15N budgets, we quantified rates of N2fixation and its importance for supporting export production at stations sampled near the southwest Pacific Tonga-Kermadec Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents located along the arc provide significant dissolved iron to the euphotic zone, stimulating N2fixation. Here we compare measurements of water column δ15NNO3+NO2with sinking particulate δ15N collected by short-term sediment traps deployed at 170 m and 270 m at stations in close proximity to subsurface hydrothermal activity, and the δ15N of N2fixation. Results from the δ15N budgets yield high geochemically-based N2fixation rates (282 to 638 µmol N m-2d-1) at stations impacted by hydrothermal activity, supporting 64 to 92% of export production in late spring. These results are consistent with contemporaneous15N2uptake rate estimates and molecular work describing highTrichodesmiumspp. and other diazotroph abundances associated with elevated N2fixation rates. Further, the δ15N of sinking particulate N collected at 1000 m over an annual cycle revealed sinking fluxes peaked in the summer and coincided with the lowest δ15N, while lower winter sinking fluxes had the highest δ15N, indicating isotopically distinct N sources supporting export seasonally, and aligning with observations from most other δ15N budgets in oligotrophic regions. Consequently, the significant regional N2fixation input to the late spring/summer Western Tropical South Pacific results in the accumulation of low-δ15NNO3+NO2in the upper thermocline that works to lower the elevated δ15NNO3+NO2generated in the oxygen deficient zones in the Eastern Tropical South Pacific.

     
    more » « less
  4. Abstract

    We investigated methane oxidation in the oxygen minimum zone (OMZ) of the eastern tropical North Pacific (ETNP) off central Mexico. Methane concentrations in the anoxic core of the OMZ reached ~ 20 nmol L−1at off shelf sites and 34 nmol L−1at a shelf site. Rates of methane oxidation were determined in ship‐board incubations with3H‐labeled methane at O2concentrations 0–75 nmol L−1. In vertical profiles at off‐shelf stations, highest rates were found between the secondary nitrite maximum at ~ 130 m and the methane maximum at 300–400 m in the anoxic core. Methane oxidation was inhibited by addition of 1μmol L−1oxygen, which, together with the depth distribution, indicated an anaerobic pathway. A coupling to nitrite reduction was further indicated by the inhibitory effect of the nitric oxide scavenger 2‐phenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (PTIO). Metatranscriptomes from the anoxic OMZ core supported the likely involvement of nitrite‐reducing bacteria of the NC10 clade in anaerobic methane oxidation, but also indicated a potential role for nitrate‐reducing euryarchaeotal methane oxidizers (ANME‐2d). Gammaproteobacteria of the Methanococcales were further detected in both 16S rRNA gene amplicons and metatranscriptomes, but the role of these presumed obligately aerobic methane oxidizers in the anoxic OMZ core is unclear. Given available estimates of water residence time, the measured rates and rate constants (up to ~ 1 yr−1) imply that anaerobic methane oxidation is a substantial methane sink in the ETNP OMZ and hence attenuates the emission of methane from this and possibly other OMZs.

     
    more » « less
  5. Abstract

    Marine oxygen‐deficient zones represent a natural source of nitrous oxide (N2O), a potent greenhouse gas and ozone‐depleting agent. To investigate controls on N2O production, the responses of ammonia oxidation (AO) to nitrite () and N2O with respect to oxygen (O2), ammonium () and concentrations were evaluated using tracer incubations in the Eastern Tropical North Pacific. Within the oxycline, additions of and O2stimulated N2O production according to Michaelis–Menten kinetics, indicating that both substrates were limiting, and that N2O production, even if the exact mechanisms remain uncertain, is mediated by predictable kinetics. Low half‐saturation constants for (12–28 nM) and O2(460 ± 130 nM) during N2O production indicate that AO communities are well adapted to low concentrations of both substrates. Hybrid N2O formation (i.e., from one and one unlabeled nitrogen (N) source, e.g., , NO) accounted for ~ 90% of the N2O production from and was robust across the different O2, , and conditions. Lack of response to variable substrate concentrations implies that the unlabeled N source was not limiting for N2O production. Although both O2and were key modulators of N2O production rates, N2O yield (N2O produced per produced) seemed to be controlled solely by O2. The N2O yield increased when O2concentrations dropped below the half‐saturation concentration for AO to (< 1.4 μM), the range where production decreased faster than N2O production. Our study shows that O2control on N2O yield from AO is robust across stations and depths.

     
    more » « less