skip to main content

Title: Analysing eco‐evolutionary dynamics—The challenging complexity of the real world

The field of eco‐evolutionary dynamics is developing rapidly, with a growing number of well‐designed experiments quantifying the impact of evolution on ecological processes and patterns, ranging from population demography to community composition and ecosystem functioning. The key challenge remains to transfer the insights of these proof‐of‐principle experiments to natural settings, where multiple species interact and the dynamics are far more complex than those studied in most experiments.

Here, we discuss potential pitfalls of building a framework on eco‐evolutionary dynamics that is based on data on single species studied in isolation from interspecific interactions, which can lead to both under‐ and overestimation of the impact of evolution on ecological processes. Underestimation of evolution‐driven ecological changes could occur in a single‐species approach when the focal species is involved in co‐evolutionary dynamics, whereas overestimation might occur due to increased rates of evolution following ecological release of the focal species.

In order to develop a multi‐species perspective on eco‐evolutionary dynamics, we discuss the need for a broad‐sense definition of “eco‐evolutionary feedbacks” that includes any reciprocal interaction between ecological and evolutionary processes, next to a narrow‐sense definition that refers to interactions that directly feed back on the interactor that evolves.

We discuss the challenges and opportunities of using more natural settings in eco‐evolutionary studies by gradually adding complexity: (a) multiple interacting species within a guild, (b) food web interactions and (c) evolving metacommunities in multiple habitat patches in a landscape. A literature survey indicated that only a few studies on microbial systems so far developed a truly multi‐species approach in their analysis of eco‐evolutionary dynamics, and mostly so in artificially constructed communities.

Finally, we provide a road map of methods to study eco‐evolutionary dynamics in more natural settings. Eco‐evolutionary studies involving multiple species are necessarily demanding and might require intensive collaboration among research teams, but are highly needed.

Aplain language summaryis available for this article.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Functional Ecology
Page Range / eLocation ID:
p. 43-59
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade‐offs, and testing the repeatability of evolutionary outcomes.

    Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short‐lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco‐evolutionary consequences of dispersal.

    We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes.

    more » « less
  2. Abstract

    Hosts and their parasites exist within complex ecological communities. However, the role that non‐focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the ‘diversity‐disease’ relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of ‘amplification’ versus ‘dilution’ effects.

    However, non‐focal species vary in their traits, densities and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm and dynamic species interactions may better advance our understanding of parasite transmission in complex communities.

    Using the concept of the parasite's basic reproductive ratio,R0, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites and non‐focal species modulate transmission and provide examples from relevant literature.

    By focusing on the mechanism by which non‐focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, better predict community traits correlated with disease dilution or amplification, and gauge the feasibility of biocontrol for parasites of conservation, agricultural or human health concern.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  3. Abstract

    Consumer‐resource interactions are often influenced by other species in the community, such as when neighbouring plants increase or reduce herbivory to a focal plant species (known as associational effects). The many studies on associational effects between a focal plant and some neighbour have shown that these effects can vary greatly in strength and direction. But because almost all of these studies measure associational effects from only one or two neighbour species, we know little about the actual range of associational effects that a plant species might encounter in a natural setting. This makes it difficult to determine how important effects of neighbours are in real field settings, and how associational effects might interact with competition and other processes to influence plant community composition.

    In this study, we used a field experiment with a focal species,Solanum carolinense, and 11 common neighbour species to investigate how associational effects vary among many co‐occurring neighbour species and to test whether factors such as neighbour plant apparency, phylogenetic proximity to the focal species, or effects on focal plant defence traits help to explain interspecific variation in associational effect strength.

    We found that some neighbour species affectedS. carolinensedamage and attack by specialist herbivores, but associational effects of most neighbours were weak. Associational effects increased herbivore attack on average earlier in the season (associational susceptibility) and reduced herbivore attack on average later in the season (associational resistance) relative toS. carolinensein monoculture.

    We found some evidence that a neighbour's associational effect was related to its biomass and phylogenetic proximity to the focal species. While neighbour species differed in their effects on physical leaf traits of focal plants (trichome density, specific leaf area, and leaf toughness), these traits did not appear to mediate the effects of neighbours on focal plant herbivory.

    Synthesis. Our results suggest that the distribution of associational effect strengths in natural communities are similar to those observed for other interaction types, and that multiple mechanisms are likely acting simultaneously to shape associational effects of different neighbour species.

    more » « less
  4. Abstract

    Most studies on the evolution of migration focus on food, mates and/or climate as factors influencing these movements, whereas negative species interactions such as predators, parasites and pathogens are often ignored. Although infection and its associated costs clearly have the potential to influence migration, thoroughly studying these interactions is challenging without a solid theoretical framework from which to develop testable predictions in natural systems.

    Here, we aim to understand when parasites favour the evolution of migration.

    We develop a general model which enables us to explore a broad range of biological conditions and to capture population and infection dynamics over both ecological and evolutionary time‐scales.

    We show that when migration evolves depends on whether the costs of migration and infection are paid in reduced fecundity or survival. Also important are the parasite transmission mode and spatiotemporal dynamics of infection and recovery (if it occurs). Finally, we find that partial migration (where only a fraction of the population migrates) can evolve but only when parasite transmission is density‐dependent.

    Our results highlight the critical, if overlooked, role of parasites in shaping long‐distance movement patterns, and suggest that infection should be considered alongside more traditional drivers of migration in both empirical and theoretical studies.

    more » « less
  5. Abstract

    Local density can affect individual performance by altering the strength of species interactions. Within many populations, local densities vary spatially (individuals are patchily distributed) or change across life stages, which should influence the selection and eco‐evolutionary feedback because local density variance affects mean fitness and is affected by traits of individuals. However, most studies on the evolutionary consequences of density‐dependent interactions focus on populations where local densities are relatively constant through time and space.

    We investigated the influence of spatial and ontogenetic variance in local densities within an insect population by comparing a model integrating both types of local density variance with models including only spatial variance, only ontogenetic variance, or no variance. We parameterized the models with experimental data, then used elasticity and invasion analyses to characterize selection on traits that affect either the local density an individual experiences (mean clutch size) or individuals' sensitivity to density (effect of larval crowding on pupal mass).

    Spatial and ontogenetic variance reduced population elasticity to effects of local density by 76% and 34% on average, respectively.

    Spatial variance modified selection and adaptive dynamics by altering the tradeoff between density‐dependent and density‐independent vital rates. In models including spatial variance, strategies that maximized density‐dependent survival were favoured over fecundity‐maximizing strategies even at low population density, counter to predictions of density‐dependent selection theory. Furthermore, only models that included spatial variance, thus linking the scales of oviposition and density‐dependent larval survival, had an evolutionarily stable clutch size.

    Ontogenetic variance weakened selection on mean clutch size and sensitivity to larval crowding by disrupting the relationship between trait values and performance during critical life stages.

    We demonstrate that local density variance can strongly modify selection at empirically observed interaction strengths and identify mechanisms for the effects of spatial and ontogenetic variance. Our findings reveal the potential for local density variance to mediate eco‐evolutionary feedback by shaping selection on demographically important traits.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less