skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How do climate change experiments alter plot‐scale climate?
Abstract To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.  more » « less
Award ID(s):
1832210
PAR ID:
10460128
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
22
Issue:
4
ISSN:
1461-023X
Page Range / eLocation ID:
p. 748-763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less
  2. Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions. 
    more » « less
  3. Abstract The mechanisms underlying observed global patterns of partitioning precipitation () to evapotranspiration () and runoff () are controversially debated. We test the hypothesis that asynchrony between climatic water supply and demand is sufficient to explain spatio‐temporal variability of water availability. We developed a simple analytical model forthat is determined by four dimensionless characteristics of intra‐annual water supply and demand asynchrony. The analytical model, populated with gridded climate data, accurately predicted global runoff patterns within 2%–4% of independent estimates from global climate models, with spatial patterns closely correlated to observations (). The supply‐demand asynchrony hypothesis provides a physically based explanation for variability of water availability using easily measurable characteristics of climate. The model revealed widespread responsiveness of water budgets to changes in climate asynchrony in almost every global region. Furthermore, the analytical model using global averages independently reproduced the Budyko curve () providing theoretical foundation for this widely used empirical relationship. 
    more » « less
  4. Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed. 
    more » « less
  5. Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s. 
    more » « less