skip to main content


Title: Load effects on spatial working memory performance are linked to distributed alpha and beta oscillations
Abstract

Increasing spatial working memory (SWM) load is generally associated with declines in behavioral performance, but the neural correlates of load‐related behavioral effects remain poorly understood. Herein, we examine the alterations in oscillatory activity that accompany such performance changes in 22 healthy adults who performed a two‐ and four‐load SWM task during magnetoencephalography (MEG). All MEG data were transformed into the time‐frequency domain and significant oscillatory responses were imaged separately per load using a beamformer. Whole‐brain correlation maps were computed using the load‐related beamformer difference images and load‐related accuracy effects on the SWM task. The results indicated that load‐related differences in left inferior frontal alpha activity during encoding and maintenance were negatively correlated with load‐related accuracy differences on the SWM task. That is, individuals who had more substantial decreases in prefrontal alpha during high‐relative to low‐load SWM trials tended to have smaller performance decrements on the high‐load condition (i.e., they performed more accurately). The same pattern of neurobehavioral correlations was observed during the maintenance period for right superior temporal alpha activity and right superior parietal beta activity. Importantly, this is the first study to employ a voxel‐wise whole‐brain approach to significantly link load‐related oscillatory differences and load‐related SWM performance differences.

 
more » « less
NSF-PAR ID:
10460189
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Human Brain Mapping
Volume:
40
Issue:
12
ISSN:
1065-9471
Page Range / eLocation ID:
p. 3682-3689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d’ accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way. 
    more » « less
  2. Abstract

    The ability to execute a motor plan involves spatiotemporally precise oscillatory activity in primary motor (M1) regions, in concert with recruitment of “higher order” attentional mechanisms for orienting toward current task goals. While current evidence implicates gamma oscillatory activity in M1 as central to the execution of a movement, far less is known about top‐down attentional modulation of this response. Herein, we utilized magnetoencephalography (MEG) during a Posner attention‐reorienting task to investigate top‐down modulation of M1 gamma responses by frontal attention networks in 63 healthy adult participants. MEG data were evaluated in the time–frequency domain and significant oscillatory responses were imaged using a beamformer. Robust increases in theta activity were found in bilateral inferior frontal gyri (IFG), with significantly stronger responses evident in trials that required attentional reorienting relative to those that did not. Additionally, strong gamma oscillations (60–80 Hz) were detected in M1 during movement execution, with similar responses elicited irrespective of attentional reorienting. Whole‐brain voxel‐wise correlations between validity difference scores (i.e., attention reorienting trials—nonreorienting trials) in frontal theta activity and movement‐locked gamma oscillations revealed a robust relationship in the contralateral sensorimotor cortex, supplementary motor area, and right cerebellum, suggesting modulation of these sensorimotor network gamma responses by attentional reorienting. Importantly, the validity difference effect in this distributed motor network was predictive of overall motor function measured outside the scanner and further, based on a mediation analysis this relationship was fully mediated by the reallocation response in the right IFG. These data are the first to characterize the top‐down modulation of movement‐related gamma responses during attentional reorienting and movement execution.

     
    more » « less
  3. Abstract

    Transcranial direct‐current stimulation (tDCS) is a noninvasive method for modulating human brain activity. Although there are several hypotheses about the net effects of tDCS on brain function, the field's understanding remains incomplete and this is especially true for neural oscillatory activity during cognitive task performance. In this study, we examined whether different polarities of occipital tDCS differentially alter flanker task performance and the underlying neural dynamics. To this end, 48 healthy adults underwent 20 min of anodal, cathodal, or sham occipital tDCS, and then completed a visual flanker task during high‐density magnetoencephalography (MEG). The resulting oscillatory responses were imaged in the time‐frequency domain using beamforming, and the effects of tDCS on task‐related oscillations and spontaneous neural activity were assessed. The results indicated that anodal tDCS of the occipital cortices inhibited flanker task performance as measured by reaction time, elevated spontaneous activity in the theta (4–7 Hz) and alpha (9–14 Hz) bands in prefrontal and occipital cortices, respectively, and reduced task‐related theta oscillatory activity in prefrontal cortices during task performance. Cathodal tDCS of the occipital cortices did not significantly affect behavior or any of these neuronal parameters in any brain region. Lastly, the power of theta oscillations in the prefrontal cortices was inversely correlated with reaction time. In conclusion, anodal tDCS modulated task‐related oscillations and spontaneous activity across multiple cortical areas, both near the electrode and in distant sites that were putatively connected to the targeted regions.

     
    more » « less
  4. Background

    Consumption of alcohol during pregnancy impacts fetal development and may lead to a variety of physical, cognitive, and behavioral abnormalities in childhood collectively known as fetal alcohol spectrum disorder (FASD). The FASD spectrum includes children with fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS), and alcohol‐related neurodevelopmental disorder (ARND). Children with a FASD or prenatal alcohol exposure (PAE) have impaired white matter, reduced structural volumes, impaired resting‐state functional connectivity when measured with fMRI, and spectral hypersynchrony as infants. Magnetoencephalography (MEG) provides high temporal resolution and good spatial precision for examining spectral power and connectivity patterns unique from fMRI. The impact of PAE on MEG resting‐state spectral power in children remains unknown.

    Methods

    We collected 2 minutes of eyes‐open and eyes‐closed resting‐state data in 51 children (8 to 12 years of age) with 3 subgroups included: 10 ARND/PAE, 15 FAS/pFAS, and 26 controls (TDC). MEG data were collected on the Elekta Neuromag system. The following spectral metrics were compared between subgroups: power, normalized power, half power, 95% power, and Shannon spectral entropy (SSE). MEG spectral data were correlated with behavioral measures.

    Results

    Our results indicate children with FAS/pFAS had reduced spectral power and normalized power, particularly within the alpha frequency band in sensor parietal and source superior parietal and lateral occipital regions, along with elevated half power, 95% power, and SSE. We also found select hemisphere specific effects further indicating reduced corpus callosum connectivity in children with a FASD. Interestingly, while the ARND/PAE subgroup had significant differences from the FAS/pFAS subgroup, in many cases spectral data were not significantly different from TDC.

    Conclusions

    Our results were consistent with previous studies and provide new insight into resting‐state oscillatory differences both between children with FAS and TDC, and within FASD subgroups. Further understanding of these resting‐state variations and their impact on cognitive function may help provide early targets for intervention and enhance outcomes for individuals with a FASD.

     
    more » « less
  5. Abstract

    The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically‐developing youth (ages 10–17 years; 32 male). Participants completed a resting‐state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source‐reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex‐wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.

     
    more » « less