skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trauma moderates the development of the oscillatory dynamics serving working memory in a sex-specific manner
Abstract Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d’ accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way.  more » « less
Award ID(s):
2112455
PAR ID:
10331834
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Cerebral Cortex
ISSN:
1047-3211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The developing brain is marked by high plasticity, which can lead to vulnerability to early life stressors. Previous studies indicate that childhood maltreatment is associated with structural aberrations across a number of brain regions. However, prior work is limited by small sample sizes, heterogeneous age groups, the examination of one structure in isolation, the confounding of different types of early life stressors, and not accounting for socioeconomic status. These limitations may contribute to high variability across studies. The present study aimed to investigate how trauma is specifically associated with cortical thickness and gray matter volume (GMV) differences by leveraging a large sample of children ( N  = 9270) from the Adolescent Brain Cognitive Development SM Study (ABCD Study ® ). A latent measure of trauma exposure was derived from DSM-5 traumatic events, and we related this measure of trauma to the brain using structural equation modeling. Trauma exposure was associated with thinner cortices in the bilateral superior frontal gyri and right caudal middle frontal gyrus ( p fdr - values < .001) as well as thicker cortices in the left isthmus cingulate and posterior cingulate ( p fdr - values ≤ .027), after controlling age, sex, and race/ethnicity. Furthermore, trauma exposure was associated with smaller GMV in the right amygdala and right putamen ( p fdr - values ≤ .048). Sensitivity analyses that controlled for income and parental education were largely consistent with the main findings for cortical thickness. These results suggest that trauma may be an important risk factor for structural aberrations, specifically for cortical thickness differences in frontal and cingulate regions in children. 
    more » « less
  2. Abstract Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta–gamma phase–amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3–5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes. 
    more » « less
  3. In an effort to understand orangutan sociality and the benefits of socializing for a semi-solitary ape, we explore the social lives of the most gregarious orangutan age-sex class - adolescent females. From 1994-2016 adolescent females in Gunung Palung National Park had a social encounter on 50% of their follow days, spending 31% of their time in the company of others. Adolescent females were responsible for initiating social parties (coming within 50 meters) with other age-sex classes 86% of the time. Once they were in a social party, the percentage of approaches (decreases in distance between individuals) performed by adolescent females was significantly predicted by the age-sex class of their social partner (F=4.086, p=0.02). Adolescent females performed most of the approaches when they associated with adult females (70%), while approaches were more equal when they associated with flanged males (46% performed by adolescent females) or unflanged males (56% performed by adolescent females). These findings, in combination with higher rates of agonistic interactions between adolescent and adult females and higher rates of affiliative behaviors between adolescent females and unflanged males, indicate that adolescent females actively seek social opportunities with all age-sex classes, but the benefits and risks associated with socializing vary based on the age-sex of their social partners. We argue that sociality is important during adolescence for female orangutans because they must establish themselves in the social landscape, and must seek social learning opportunities. Finally, we consider the adaptive significance of meaningful social bonds for a semi-solitary, sexually coercive ape. 
    more » « less
  4. ABSTRACT: Stable carbon and nitrogen isotope analyses of bones and teeth at the ancestral heritage Muwekma Ohlone site of Yakmuy ́Ooyákma-tka (“Place of the East Ridge Site”; CA-SCL-215) reveal significant differences in the dietary life history of males and females. Overall, isotope data indicate that site inhabitants were primarily dependent on low-trophic-level foods, likely plants, and minor amounts of marine food for their main source of dietary protein. From tooth dentin serial samples, we found that males and females were similar for δ13C in early childhood (age 1–9 years), but boys were elevated in δ15N by 0.6–1.0‰ relative to girls, indicating boys were accessing slightly greater amounts of higher-trophic-level foods, such as meat from game. The sex-biased difference in δ15N diminishes during the second decade of life, as female δ15N values increase and become equal to males. However, a difference in δ13C emerges during the second decade: female δ13C values are elevated relative to males. This could indicate that teenage females consumed higher amounts of low-trophic-level, marine-derived protein, such as shellfish. During later adult years the difference in δ13C disappears, while males again show an increase in δ15N relative to females. Although these differences are small, they reveal important sex-biased life history patterns during childhood and adulthood in this ancient community. 
    more » « less
  5. Episodic memories are records of personally experienced events, coded neurally via the hippocampus and sur- rounding medial temporal lobe cortex. Information about the neural signal corresponding to a memory representation can be measured in fMRI data when the pattern across voxels is examined. Prior studies have found that similarity in the voxel patterns across repetition of a to-be-remembered stimulus predicts later memory retrieval, but the results are inconsistent across studies. The current study investigates the possibility that cognitive goals (defined here via the task instructions given to participants) during encoding affect the voxel pattern that will later support memory retrieval, and therefore that neural representations cannot be interpreted based on the stimulus alone. The behavioral results showed that exposure to variable cognitive tasks across repetition of events benefited subsequent memory retrieval. Voxel patterns in the hippocampus indicated a significant interaction between cognitive tasks (variable vs. consistent) and memory (remembered vs. forgotten) such that reduced voxel pattern similarity for repeated events with variable cognitive tasks, but not consistent cognitive tasks, sup- ported later memory success. There was no significant interaction in neural pattern similarity between cognitive tasks and memory success in medial temporal cortices or lateral occipital cortex. Instead, higher similarity in voxel patterns in right medial temporal cortices was associated with later memory retrieval, regardless of cognitive task. In conclusion, we found that the relationship between pattern similarity across repeated encoding and memory success in the hippocampus (but not medial temporal lobe cortex) changes when the cognitive task during encoding does or does not vary across repetitions of the event. 
    more » « less