skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Logic‐Based Delivery of Site‐Specifically Modified Proteins from Environmentally Responsive Hydrogel Biomaterials
Abstract The controlled presentation of proteins from and within materials remains of significant interest for many bioengineering applications. Though “smart” platforms offer control over protein release in response to a single external cue, no strategy has been developed to trigger delivery in response to user‐specified combinations of environmental inputs, nor to independently control the release of multiple species from a homogenous material. Here, a modular semisynthetic scheme is introduced to govern the release of site‐specifically modified proteins from hydrogels following Boolean logic. A sortase‐mediated transpeptidation reaction is used to generate recombinant proteins C‐terminally tethered to gels through environmentally sensitive degradable linkers. By varying the connectivity of multiple stimuli‐labile moieties within these customizable linkers, YES/OR/AND control of protein release is exhaustively demonstrated in response to one and two‐input combinations involving enzyme, reductant, and light. Tethering of multiple proteins each through a different stimuli‐sensitive linker permits their independent and sequential release from a common material. It is expected that these methodologies will enable new opportunities in tissue engineering and therapeutic delivery.  more » « less
Award ID(s):
1652141 1807398
PAR ID:
10460198
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
33
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although mechanical signals presented by the extracellular matrix are known to regulate many essential cell functions, the specific effects of these interactions, particularly in response to dynamic and heterogeneous cues, remain largely unknown. Here, a modular semisynthetic approach is introduced to create protein–polymer hydrogel biomaterials that undergo reversible stiffening in response to user‐specified inputs. Employing a novel dual‐chemoenzymatic modification strategy, fusion protein‐based gel crosslinkers are created that exhibit stimuli‐dependent intramolecular association. Linkers based on calmodulin yield calcium‐sensitive materials, while those containing the photosensitive light, oxygen, and voltage sensing domain 2 (LOV2) protein give phototunable constructs whose moduli can be cycled on demand with spatiotemporal control about living cells. These unique materials are exploited to demonstrate the significant role that cyclic mechanical loading plays on fibroblast‐to‐myofibroblast transdifferentiation in 3D space. The moduli‐switchable materials should prove useful for studies in mechanobiology, providing new avenues to probe and direct matrix‐driven changes in 4D cell physiology. 
    more » « less
  2. Abstract Stimuli–responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)‐responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa‐cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD‐functionalized FXa‐degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa‐mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa‐mediated dissociation did not influence their differentiation capacity or indoleamine 2,3‐dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa‐degradable hydrogel is a novel responsive biomaterial system that may be used for on‐demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells. 
    more » « less
  3. Abstract Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli‐responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non‐specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, a protein‐based platform termed TEV Protease‐mediated Releasable Actin‐binding Protein (TRAP) is designed and constructed for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell‐penetrating peptide membrane translocation. TRAP's efficacy in facilitating light‐activated secretion of both fluorescent and luminescent proteins is demonstrated. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli‐responsive biomaterials, versatile synthetic cell‐based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics. 
    more » « less
  4. Stimuli-responsive biomaterials are useful platforms for environmentally triggered drug delivery. By varying the molecular architecture of orthogonal stimuli-labile linkages between small molecules and non-degradable materials, we demonstrate the Boolean logic-based release of model therapeutics from gels. Programmable responses are demonstrated for materials sensitive to input combinations involving enzymes, chemical reductants, and light via YES, OR, and AND logic gates. 
    more » « less
  5. Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG–PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG–PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients. 
    more » « less