skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metal–Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG–PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG–PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.  more » « less
Award ID(s):
2239629 2217474 1942596 2306137 1946202
PAR ID:
10500910
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
16
Issue:
12
ISSN:
1944-8244
Page Range / eLocation ID:
14405 to 14420
Subject(s) / Keyword(s):
polymeric nanoparticles lysozyme protein delivery metal−organic framework (MOF) zeolitic imidazolate framework (ZIF) encapsulation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury. View Full-Text 
    more » « less
  2. Abstract Vascular‐targeted drug delivery remains an attractive platform for therapeutic and diagnostic interventions in human diseases. This work focuses on the development of a poly‐lactic‐co‐glycolic‐acid (PLGA)‐based multistage delivery system (MDS). MDS consists of two stages: a micron‐sized PLGA outer shell and encapsulated drug‐loaded PLGA nanoparticles. Nanoparticles with average diameters of 76, 119, and 193 nm are successfully encapsulated into 3–6 µm MDS. Sustained in vitro release of nanoparticles from MDS is observed for up to 7 days. Both MDS and nanoparticles arebiocompatible with human endothelial cells. Sialyl‐Lewis‐A (sLeA) is successfully immobilized on the MDS and nanoparticle surfaces to enable specific targeting of inflamed endothelium. Functionalized MDS demonstrates a 2.7‐fold improvement in endothelial binding compared to PLGA nanoparticles from human blood laminar flow. Overall, the presented results demonstrate successful development and characterization of MDS and suggest that MDS can serve as an effective drug carrier, which can enhance the margination of nanoparticles to the targeted vascular wall. 
    more » « less
  3. Abstract Hematopoietic stem and progenitor cells (HSPCs) are desirable targets for gene therapy but are notoriously difficult to target and transfect. Existing viral vector‐based delivery methods are not effective in HSPCs due to their cytotoxicity, limited HSPC uptake and lack of target specificity (tropism). Poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (NPs) are attractive, nontoxic carriers that can encapsulate various cargo and enable its controlled release. To engineer PLGA NP tropism for HSPCs, megakaryocyte (Mk) membranes, which possess HSPC‐targeting moieties, were extracted and wrapped around PLGA NPs, producing MkNPs. In vitro, fluorophore‐labeled MkNPs are internalized by HSPCs within 24 h and were selectively taken up by HSPCs versus other physiologically related cell types. Using membranes from megakaryoblastic CHRF‐288 cells containing the same HSPC‐targeting moieties as Mks, CHRF‐wrapped NPs (CHNPs) loaded with small interfering RNA facilitated efficient RNA interference upon delivery to HSPCs in vitro. HSPC targeting was conserved in vivo, as poly(ethylene glycol)–PLGA NPs wrapped in CHRF membranes specifically targeted and were taken up by murine bone marrow HSPCs following intravenous administration. These findings suggest that MkNPs and CHNPs are effective and promising vehicles for targeted cargo delivery to HSPCs. 
    more » « less
  4. null (Ed.)
    Human papillomavirus (HPV) is a globally prevalent sexually-transmitted pathogen, responsible for most cases of cervical cancer. HPV vaccination rates remain suboptimal, partly due to the need for multiple doses, leading to a lack of compliance and incomplete protection. To address the drawbacks of current HPV vaccines, we used a scalable manufacturing process to prepare implantable polymer–protein blends for single-administration with sustained delivery. Peptide epitopes from HPV16 capsid protein L2 were conjugated to the virus-like particles derived from bacteriophage Qβ, to enhance their immunogenicity. The HPV-Qβ particles were then encapsulated into poly(lactic-co-glycolic acid) (PLGA) implants, using a benchtop melt-processing system. The implants facilitated the slow and sustained release of HPV-Qβ particles without the loss of nanoparticle integrity, during high temperature melt processing. Mice vaccinated with the implants generated IgG titers comparable to the traditional soluble injections and achieved protection in a pseudovirus neutralization assay. HPV-Qβ implants offer a new vaccination platform; because the melt-processing is so versatile, the technology offers the opportunity for massive upscale into any geometric form factor. Notably, microneedle patches would allow for self-administration in the absence of a healthcare professional, within the developing world. The Qβ technology is highly adaptable, allowing the production of vaccine candidates and their delivery devices for multiple strains or types of viruses. 
    more » « less
  5. Aims: Stimuli-responsive polymersomes are promising tools for protein-based therapies, but require deeper understanding and optimization of their pathology-responsive behavior. Materials & methods: Hyaluronic acid (HA)–poly(b-lactic acid) (PLA) polymersomes self-assembled from block copolymers of varying molecular weights of HA were compared for their physical properties, degradation and intracellular behavior. Results: Major results showed increasing enzyme-responsivity associated with decreasing molecular weight. The major formulation differences were as follows: the HA(5 kDa)–PLA formulation exhibited the most pronounced release of encapsulated proteins, while the HA(7 kDa)–PLA formulation showed the most different release behavior from neutral. Conclusion: We have discovered design rules for HA–PLA polymersomes for protein delivery, with lower molecular weight leading to higher encapsulation efficiency, greater release and greater intracellular uptake. 
    more » « less